Skip to main content

Multiple Access Techniques

  • Chapter
  • First Online:
5G and Beyond

Abstract

Multiple access is an essential physical-layer technique in wireless communication networks that allows multiple mobile users to access the network simultaneously. Driven by the upsurge of devices expected in 6G and beyond, future wireless communication networks are foreseen to operate in dynamic regimes ranging from underloaded (where the number of scheduled devices is smaller than the number of transmit antennas on each access point) to overloaded (where the number of scheduled devices is larger than the number of transmit antennas on each access point). Besides, each transmitter is required to simultaneously serve devices with heterogeneous capabilities, deployments, as well as qualities of channel state information at the transmitter (CSIT) since the devices for 5G and beyond tend to be more diverse including low-end units such as Internet of Things (IoT) and machine-type communications (MTC)-type devices and high-end equipment such as smartphones with varied user deployments and applications. The resulting requirements for massive connectivity, high throughput, as well as quality of service (QoS) heterogeneity have recently sparked interests in redesigning multiple access techniques for the downlink of communication systems. This chapter first reviews the state-of-the-art multiple access techniques including their benefits and limitations, followed by introducing the promising multiple access candidate, rate-splitting multiple access (RSMA) for 6G and beyond, and a comprehensive comparison among all multiple access techniques. The challenges and future trends of using RSMA will be summarized in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The DoF, also known as spatial multiplexing gain, characterizes the number of interference-free streams that can be transmitted or equivalently the pre-log factor of the rate at high SNR.

  2. 2.

    In the sequel, power-domain NOMA will be referred to simply by NOMA.

  3. 3.

    Note that it is not necessary to let all users split their messages in some cases. For example, when maximizing the sum rate without QoS rate constraint [30], one user splits its message into common and private parts which is sufficient. However, splitting the messages of all users is more general, and it becomes necessary when user fairness is considered in the design. for instance, when maximizing WSR or max–min fairness or with QoS rate constraint [17, 30, 34].

  4. 4.

    Please notice that the role of the common stream here is fundamentally different from a multicast stream, though both of them are decoded by all users. The common stream in RS encapsulates parts of private messages of different users. It is not entirely required by all users. In contrast, a multicast stream is encoded by a message originally intended for all users. Each user requires the full message [4].

  5. 5.

    The decoding order of s c and s k can be further optimized. We here follow the rule that the data stream intended for more users has a higher decoding priority [63, 64] for the entire RSMA framework.

References

  1. H. Weingarten, Y. Steinberg, S.S. Shamai, The capacity region of the Gaussian multiple-input multiple-output broadcast channel. IEEE Trans. Inf. Theory 52(9), 3936–3964 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Clerckx, C. Oestges, MIMO Wireless Networks: Channels, Techniques and Standards for Multi-antenna, Multi-user and Multi-cell Systems (Academic Press, New York, NY, USA 2013)

    Google Scholar 

  3. T. Yoo, A. Goldsmith, On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE J. Sel. Areas Commun. 24(3), 528–541 (2006)

    Article  Google Scholar 

  4. B. Clerckx, H. Joudeh, C. Hao, M. Dai, B. Rassouli, Rate splitting for MIMO wireless networks: a promising PHY-layer strategy for LTE evolution. IEEE Commun. Mag. 54(5), 98–105 (2016)

    Article  Google Scholar 

  5. N. Jindal, MIMO broadcast channels with finite-rate feedback. IEEE Trans. Inf. Theory 52(11), 5045–5060 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi, Non-orthogonal multiple access (NOMA) for cellular future radio access, in Proceedings of the IEEE 77th Vehicular Technology Conference (VTC Spring), June 2013, pp. 1–5

    Google Scholar 

  7. H. Nikopour, H. Baligh, Sparse code multiple access, in Proceedings of the IEEE Annual International Symposium on Personal Indoor Mobile Radio Communications (PIMRC), Sept 2013, pp. 332–336

    Google Scholar 

  8. L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-lin, Z. Wang, Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 53(9), 74–81 (2015)

    Article  Google Scholar 

  9. Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-lin, H.V. Poor, Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag. 55(2), 185–191 (2017)

    Article  Google Scholar 

  10. W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, Non-orthogonal multiple access in multi-cell networks: theory, performance, and practical challenges. IEEE Commun. Mag. 55(10), 176–183 (2017)

    Article  Google Scholar 

  11. T. Cover, Broadcast channels. IEEE Trans. Inf. Theory 18(1), 2–14 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Tse, P. Viswanath, Fundamentals of Wireless Communication (Cambridge University Press, Cambridge, U.K. 2005)

    Book  MATH  Google Scholar 

  13. M.F. Hanif, Z. Ding, T. Ratnarajah, G.K. Karagiannidis, A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Trans. Signal Process. 64(1), 76–88 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Choi, Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems. IEEE Trans. Commun. 63(3), 791–800 (2015)

    Article  Google Scholar 

  15. Q. Sun, S. Han, I. Chih-lin, Z. Pan, On the ergodic capacity of MIMO NOMA systems. IEEE Wireless Commun. Lett. 4(4), 405–408 (2015)

    Article  Google Scholar 

  16. Q. Zhang, Q. Li, J. Qin, Robust beamforming for nonorthogonal multiple-access systems in MISO channels. IEEE Trans. Veh. Technol. 65(12), 10231–10236 (2016)

    Article  Google Scholar 

  17. H. Joudeh, B. Clerckx, Rate-splitting for max-min fair multigroup multicast beamforming in overloaded systems. IEEE Trans. Wireless Commun. 16(11), 7276–7289 (2017)

    Article  Google Scholar 

  18. C. Lim, T. Yoo, B. Clerckx, B. Lee, B. Shim, Recent trend of multiuser MIMO in LTE-advanced. IEEE Commun. Mag. 51(3), 127–135 (2013)

    Article  Google Scholar 

  19. Z. Chen, Z. Ding, X. Dai, G.K. Karagiannidis, On the application of quasi-degradation to MISO–NOMA downlink. IEEE Trans. Signal Process. 64(23), 6174–6189 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Z. Ding, F. Adachi, H.V. Poor, The application of MIMO to non-orthogonal multiple access. IEEE Trans. Wireless Commun. 15(1), 537–552 (2016)

    Article  Google Scholar 

  21. J. Choi, On generalized downlink beamforming with NOMA. J. Commun. Netw. 19(4), 319–328 (2017)

    Article  Google Scholar 

  22. W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, Coordinated beamforming for multi-cell MIMO-NOMA. IEEE Commun. Lett. 21(1), 84–87 (2017)

    Article  Google Scholar 

  23. V.D. Nguyen, H.D. Tuan, T.Q. Duong, H.V. Poor, O.S. Shin, Precoder design for signal superposition in MIMO–NOMA multicell networks. IEEE J. Sel. Areas Commun. 35(12), 2681–2695 (2017)

    Article  Google Scholar 

  24. M. Zeng, A. Yadav, O.A. Dobre, G.I. Tsiropoulos, H.V. Poor, Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster. IEEE J. Sel. Areas Commun. 35(10), 2413–2424 (2017)

    Article  Google Scholar 

  25. T. Han, K. Kobayashi, A new achievable rate region for the interference channel. IEEE Trans. Inf. Theory 27(1), 49–60 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. R.H. Etkin, D.N.C. Tse, H. Wang, Gaussian interference channel capacity to within one bit. IEEE Trans. Inf. Theory 54(12), 5534–5562 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Rimoldi, R. Urbanke, A rate-splitting approach to the Gaussian multiple-access channel. IEEE Trans. Inf. Theory 42(2), 364–375 (1996)

    Article  MATH  Google Scholar 

  28. A.G. Davoodi, S.A. Jafar, Aligned image sets under channel uncertainty: settling conjectures on the collapse of degrees of freedom under finite precision CSIT. IEEE Trans. Inf. Theory 62(10), 5603–5618 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Yang, M. Kobayashi, D. Gesbert, X. Yi, Degrees of freedom of time correlated MISO broadcast channel with delayed CSIT. IEEE Trans. Inf. Theory 59(1), 315–328 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Joudeh, B. Clerckx, Sum-rate maximization for linearly precoded downlink multiuser MISO systems with partial CSIT: a rate-splitting approach. IEEE Trans. Commun. 64(11), 4847–4861 (2016)

    Article  MATH  Google Scholar 

  31. E. Piovano, B. Clerckx, Optimal DoF region of the K-user MISO BC with partial CSIT. IEEE Commun. Lett. 21(11), 2368–2371 (2017)

    Article  Google Scholar 

  32. C. Hao, B. Clerckx, MISO networks with imperfect CSIT: a topological rate-splitting approach. IEEE Trans. Commun. 65(5), 2164–2179 (2017)

    Article  Google Scholar 

  33. C. Hao, B. Rassouli, B. Clerckx, Achievable DoF regions of MIMO networks with imperfect CSIT. IEEE Trans. Inf. Theory 63(10), 6587–6606 (2017)

    Article  MATH  Google Scholar 

  34. H. Joudeh, B. Clerckx, Robust transmission in downlink multiuser MISO systems: a rate-splitting approach. IEEE Trans. Signal Process. 64(23), 6227–6242 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. A.G. Davoodi, S.A. Jafar, GDoF of the MISO BC: bridging the gap between finite precision CSIT and perfect CSIT, in Proceedings of the IEEE International Symposium on Information Theory (ISIT), July 2016, pp. 1297–1301

    Google Scholar 

  36. A.G. Davoodi, S.A. Jafar, Transmitter cooperation under finite precision CSIT: a GDoF perspective. IEEE Trans. Inf. Theory 63(9), 6020–6030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. E. Piovano, H. Joudeh, B. Clerckx, Overloaded multiuser MISO transmission with imperfect CSIT, in Proceedings of the 50th Asilomar Conference on Signals, Systems and Computers, Nov 2016, pp. 34–38

    Google Scholar 

  38. C. Hao, Y. Wu, B. Clerckx, Rate analysis of two-receiver MISO broadcast channel with finite rate feedback: a rate-splitting approach. IEEE Trans. Commun. 63(9), 3232–3246 (2015)

    Article  Google Scholar 

  39. M. Dai, B. Clerckx, D. Gesbert, G. Caire, A rate splitting strategy for massive MIMO with imperfect CSIT. IEEE Trans. Wireless Commun. 15(7), 4611–4624 (2016)

    Google Scholar 

  40. A. Papazafeiropoulos, B. Clerckx, T. Ratnarajah, Rate-splitting to mitigate residual transceiver hardware impairments in massive MIMO systems. IEEE Trans. Veh. Technol. 66(9), 8196–8211 (2017)

    Article  Google Scholar 

  41. M. Dai, B. Clerckx, Multiuser millimeter wave beamforming strategies with quantized and statistical CSIT. IEEE Trans. Wireless Commun. 16(11), 7025–7038 (2017)

    Article  Google Scholar 

  42. Y. Mao, B. Clerckx, V.O.K. Li, Rate-splitting multiple access for downlink communication systems: bridging, generalizing, and outperforming SDMA and NOMA. EURASIP J. Wireless Commun. Netw. 2018(1), 133 (2018)

    Google Scholar 

  43. O. Tervo, L. Trant, S. Chatzinotas, B. Ottersten, M. Juntti, Multigroup multicast beamforming and antenna selection with rate-splitting in multicell systems, in Proceedings of the IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), June 2018, pp. 1–5

    Google Scholar 

  44. M. Medra, T.N. Davidson, Robust downlink transmission: an offset-based single-rate-splitting approach, in Proceedings of the IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), June 2018, pp. 1–5

    Google Scholar 

  45. Y. Mao, B. Clerckx, V.O.K. Li, Energy efficiency of rate-splitting multiple access, and performance benefits over SDMA and NOMA, in Proceedings of the IEEE International Symposium on Wireless Communication Systems (ISWCS), Aug 2018, pp. 1–5

    Google Scholar 

  46. A.R. Flores, B. Clerckx, R.C. de Lamare, Tomlinson-harashima precoded rate-splitting for multiuser multiple-antenna systems, in Proceedings of the IEEE International Symposium on Wireless Communication Systems (ISWCS), Aug 2018, pp. 1–6

    Google Scholar 

  47. A. Papazafeiropoulos, T. Ratnarajah, Rate-splitting robustness in multi-pair massive MIMO relay systems. IEEE Trans. Wireless Commun. 17(8), 5623–5636 (2018)

    Article  Google Scholar 

  48. M. Caus, A. Pastore, M. Navarro, T. Ramirez, C. Mosquera, N. Noels, N. Alagha, A.I. Perez-Neira, Exploratory analysis of superposition coding and rate splitting for multibeam satellite systems, in Proceedings of the IEEE International Symposium on Wireless Communication Systems (ISWCS), Aug 2018, pp. 1–5

    Google Scholar 

  49. Y. Mao, B. Clerckx, V.O.K. Li, Rate-splitting multiple access for coordinated multi-point joint transmission, in IEEE International Conference on Communications Workshops (ICC Workshops), May 2019, pp. 1–6

    Google Scholar 

  50. A.A. Ahmad, J. Kakar, R. Reifert, A. Sezgin, UAV-assisted C-RAN with rate splitting under base station breakdown scenarios, in IEEE International Conference on Communications Workshops (ICC Workshops), May 2019, pp. 1–6

    Google Scholar 

  51. A. Rahmati, Y. Yapici, N. Rupasinghe, I. Guvenc, H. Dai, A. Bhuyan, Energy efficiency of RSMA and NOMA in cellular-connected mmwave UAV networks, in IEEE International Conference on Communications Workshops (ICC Workshops), May 2019, pp. 1–6

    Google Scholar 

  52. A. Alameer Ahmad, H. Dahrouj, A. Chaaban, A. Sezgin, M. Alouini, Interference mitigation via rate-splitting and common message decoding in cloud radio access networks. IEEE Access 7, 80350–80365 (2019)

    Article  Google Scholar 

  53. D. Yu, J. Kim, S. Park, An efficient rate-splitting multiple access scheme for the downlink of C-RAN systems. IEEE Wireless Commun. Lett. 8(6), 1555–1558 (2019)

    Article  Google Scholar 

  54. Y. Mao, B. Clerckx, V.O.K. Li, Rate-splitting for multi-user multi-antenna wireless information and power transfer, in Proceedings of the IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), July 2019, pp. 1–5

    Google Scholar 

  55. X. Su, L. Li, H. Yin, P. Zhang, Robust power- and rate-splitting-based transceiver design in k-user MISO SWIPT interference channel under imperfect CSIT. IEEE Commun. Lett. 23(3), 514–517 (2019)

    Article  Google Scholar 

  56. J. Zhang, B. Clerckx, J. Ge, Y. Mao, Cooperative rate splitting for MISO broadcast channel with user relaying, and performance benefits over cooperative NOMA. IEEE Signal Process. Lett. 26(11), 1678–1682 (2019)

    Article  Google Scholar 

  57. Y. Mao, B. Clerckx, V.O.K. Li, Rate-splitting for multi-antenna non-orthogonal unicast and multicast transmission: spectral and energy efficiency analysis. IEEE Trans. Commun. 67(12), 8754–8770 (2019)

    Article  Google Scholar 

  58. B. Clerckx, Y. Mao, R. Schober, H.V. Poor, Rate-splitting unifying SDMA, OMA, NOMA, and multicasting in MISO broadcast channel: a simple two-user rate analysis. IEEE Wireless Commun. Lett. 1–1 9(3), 349–353 (2020)

    Google Scholar 

  59. H. Chen, D. Mi, B. Clerckx, Z. Chu, J. Shi, P. Xiao, Joint power and subcarrier allocation optimization for multigroup multicast systems with rate splitting. IEEE Trans. Veh. Technol. 1–1 69(2), 2306–2310 (2020)

    Google Scholar 

  60. A.R. Flores, R.C. De Lamare, B. Clerckx, Linear precoding and stream combining for rate splitting in multiuser MIMO systems. IEEE Commun. Lett. 1–1 24(4), 890–894 (2020)

    Google Scholar 

  61. Y. Mao, B. Clerckx, J. Zhang, V.O.K. Li, M. Arafah, Max-min fairness of K-user cooperative rate-splitting in MISO broadcast channel with user relaying. IEEE Trans. on Wireless Commun. 19(10), 6362–6376 (2020)

    Article  Google Scholar 

  62. Y. Mao, B. Clerckx, Beyond dirty paper coding for multi-antenna broadcast channel with partial CSIT: a rate-splitting approach. IEEE Trans. on Commun. (early access, 2020)

    Google Scholar 

  63. J. Zhao, D. Gündüz, O. Simeone, D. Gómez-Barquero, Non-orthogonal unicast and broadcast transmission via joint beamforming and LDM in cellular networks. IEEE Trans. Broadcast. 1–13 66(2), 216–228 (2019)

    Google Scholar 

  64. Y.F. Liu, C. Lu, M. Tao, J. Wu, Joint multicast and unicast beamforming for the MISO downlink interference channel, in Proceedings of the IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), July 2017, pp. 1–5

    Google Scholar 

  65. J. Riordan, Introduction to combinatorial analysis (Courier Corporation, Chelmsford, MA, USA 2012)

    MATH  Google Scholar 

  66. S.S. Christensen, R. Agarwal, E.D. Carvalho, J.M. Cioffi, Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design. IEEE Trans. Wireless Commun. 7(12), 4792–4799 (2008)

    Article  Google Scholar 

  67. G. Caire, N. Jindal, M. Kobayashi, N. Ravindran, Multiuser MIMO achievable rates with downlink training and channel state feedback. IEEE Trans. Inf. Theory 56(6), 2845–2866 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  68. C. Hao, Y. Wu, B. Clerckx, Rate analysis of two-receiver MISO broadcast channel with finite rate feedback: a rate-splitting approach. IEEE Trans. Commun. 63(9), 3232–3246 (2015)

    Article  Google Scholar 

  69. J. Chen, V.K.N. Lau, Two-tier precoding for FDD multi-cell massive MIMO time-varying interference networks. IEEE J. Sel. Areas Commun. 32(6), 1230–1238 (2014)

    Article  Google Scholar 

  70. J. Park, B. Clerckx, Multi-user linear precoding for multi-polarized massive MIMO system under imperfect CSIT. IEEE Trans. Wireless Commun. 14(5), 2532–2547 (2015)

    Article  Google Scholar 

  71. D. Kim, G. Lee, Y. Sung, Two-stage beamformer design for massive MIMO downlink by trace quotient formulation. IEEE Trans. Commun. 63(6), 2200–2211 (2015)

    Article  Google Scholar 

  72. J. Zhang, P. Elia, Fundamental limits of cache-aided wireless BC: interplay of coded-caching and CSIT feedback. IEEE Trans. Inf. Theory 63(5), 3142–3160 (2017)

    MathSciNet  MATH  Google Scholar 

  73. C. Xu, B. Clerckx, S. Chen, Y. Mao, J. Zhang, Rate-splitting multiple access for multi-antenna joint communication and radar transmissions. IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020, pp. 1–6

    Google Scholar 

  74. L. Yin, B. Clerckx, Rate-splitting multiple access for multibeam satellite communications. arXiv preprint arXiv:2002.01731 (2020)

    Google Scholar 

  75. Evolved universal terrestrial radio access (E-UTRA); LTE physical layer; General description (Release 8), 3GPP TS 36.201, Tech. Rep., Mar 2009

    Google Scholar 

  76. Coordinated multi-point operation for LTE physical layer aspects (Release 11), 3GPP TR 36.819, Tech. Rep., Aug 2016

    Google Scholar 

  77. Study on network-assisted interference cancellation and suppression (NAIC) for LTE (Release 12), 3GPP TR 36.866, Tech. Rep., Mar 2014

    Google Scholar 

  78. Study on downlink multiuser superposition transmission (MUST) for LTE (Release 13), 3GPP TR 36.859, Tech. Rep., Dec 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Clerckx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mao, Y., Clerckx, B. (2021). Multiple Access Techniques. In: Lin, X., Lee, N. (eds) 5G and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-030-58197-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58197-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58196-1

  • Online ISBN: 978-3-030-58197-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics