Skip to main content

Optimal Implant Fixation in Knee Arthroplasty: Cemented Versus Cementless Knee Arthroplasty

  • Chapter
  • First Online:
Basics in Primary Knee Arthroplasty

Abstract

The long-term functional outcome of knee arthroplasty depends on optimal and durable fixation of implants to the bone. Cement fixation has been used extensively for total knee arthroplasty (TKA) and unicondylar knee arthroplasty (UKA). It is still the most widely used form of fixation. Cement fixation provides excellent primary stability for decades; however, it carries the risk of failure at the bone cement interface in time. The success of cementless designs in the hip have led to cementless implants in TKA. However, the results have been mixed, with worse outcomes in earlier designs. Newer generation of cementless TKA with improved surface coatings and better designs showed promising short-term results; however, long-term durability of these implants has not been published. This chapter reviews the current knowledge and future trends on fixation methods in knee arthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaishya R, Chauhan M, Vaish A. Bone cement. J Clin Orthop Trauma. 2013;4(4):157–63. https://doi.org/10.1016/j.jcot.2013.11.005.

  2. Reckling FW, Dillon WL. The bone-cement interface temperature during total joint replacement. J Bone Joint Surg Am. 1977;59(1):80–2.

    Article  CAS  Google Scholar 

  3. Vessely MB, Whaley AL, Harmsen WS, Schleck CD, Berry DJ. The Chitranjan Ranawat Award: long-term survivorship and failure modes of 1000 cemented condylar total knee arthroplasties. Clin Orthop Relat Res. 2006;452:28–34. https://doi.org/10.1097/01.blo.0000229356.81749.11.

  4. Matassi F, Carulli C, Civinini R, Innocenti M. Cemented versus cementless fixation in total knee arthroplasty. Joints. 2014;1(3):121–5. https://doi.org/10.1055/s-0039-1678687.

  5. Majkowski RS, Bannister GC, Miles AW. The effect of bleeding on the cement-bone interface. An experimental study. Clin Orthop Relat Res. 1994;(299):293–7.

    Google Scholar 

  6. Pfitzner T, von Roth P, Voerkelius N, Mayr H, Perka C, Hube R. Influence of the tourniquet on tibial cement mantle thickness in primary total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2016;24(1):96–101. https://doi.org/10.1007/s00167-014-3341-6.

  7. Vertullo CJ, Nagarajan M. Is cement penetration in TKR reduced by not using a tourniquet during cementation? A single blinded, randomized trial. J Orthop Surg (Hong Kong). 2017;25(1):2309499016684323. https://doi.org/10.1177/2309499016684323.

  8. Jaeger S, Seeger JB, Schuld C, Bitsch RG, Clarius M. Tibial cementing in UKA: a three-dimensional analysis of the bone cement implant interface and the effect of bone lavage. J Arthroplasty. 2013;28(9 Suppl):191–4. https://doi.org/10.1016/j.arth.2013.05.014.

  9. Schlegel UJ, Siewe J, Delank KS, Eysel P, Püschel K, Morlock MM, de Uhlenbrock AG. Pulsed lavage improves fixation strength of cemented tibial components. Int Orthop. 2011;35(8):1165–9. https://doi.org/10.1007/s00264-010-1137-y.

  10. Miller MA, Terbush MJ, Goodheart JR, Izant TH, Mann KA. Increased initial cement-bone interlock correlates with reduced total knee arthroplasty micro-motion following in vivo service. J Biomech. 2014;47(10):2460–6. https://doi.org/10.1016/j.jbiomech.2014.04.016.

  11. Cawley DT, Kelly N, McGarry JP, Shannon FJ. Cementing techniques for the tibial component in primary total knee replacement. Bone Joint J. 2013;95-B:295–300. https://doi.org/10.1302/0301-620X.95B3.29586.

  12. Walker PS, Soudry M, Ewald FC, McVickar H. Control of cement penetration in total knee arthroplasty. Clin Orthop Relat Res. 1984:155–64.

    Google Scholar 

  13. Huiskes R, Sloof TJ. Thermal injury of cancellous bone following pressured penetration of acrylic cement. Trans Orthop Res Soc. 1981;6:134.

    Google Scholar 

  14. Vanlommel J, Luyckx JP, Labey L, Innocenti B, De Corte R, Bellemans J. Cementing the tibial component in total knee arthroplasty: which technique is the best? J Arthroplasty. 2011;26(3):492–6. https://doi.org/10.1016/j.arth.2010.01.107.

  15. Vaninbroukx M, Labey L, Innocenti B, Bellemans J. Cementing the femoral component in total knee arthroplasty: which technique is the best? Knee. 2009;16(4):265–8. https://doi.org/10.1016/j.knee.2008.11.015.

  16. Ritter MA, Herbst SA, Keating EM, Faris PM. Radiolucency at the bone-cement interface in total knee replacement. The effects of bone-surface preparation and cement technique. J Bone Joint Surg Am. 1994;76(1):60–5. https://doi.org/10.2106/00004623-199401000-00008.

  17. Lutz MJ, Pincus PF, Whitehouse SL, Halliday BR. The effect of cement gun and cement syringe use on the tibial cement mantle in total knee arthroplasty. J Arthroplasty. 2009;24(3):461–7. https://doi.org/10.1016/j.arth.2007.10.028.

  18. Kopec M, Milbrandt JC, Duellman T, Mangan D, Allan DG. Effect of hand packing versus cement gun pressurization on cement mantle in total knee arthroplasty. Can J Surg. 2009;52(6):490–4.

    PubMed  PubMed Central  Google Scholar 

  19. Schlegel UJ, Püschel K, Morlock MM, Nagel K. An in vitro comparison of tibial tray cementation using gun pressurization or pulsed lavage. Int Orthop. 2014;38(5):967–71. https://doi.org/10.1007/s00264-014-2303-4.

  20. Matthews JJ, Ball L, Blake SM, Cox PJ. Combined syringe cement pressurisation and intra-osseous suction: an effective technique in total knee arthroplasty. Acta Orthop Belg. 2009;75(5):637–41.

    PubMed  Google Scholar 

  21. Stannage K, Shakespeare D, Bulsara M. Suction technique to improve cement penetration under the tibial component in total knee arthroplasty. Knee. 2003;10(1):67–73. https://doi.org/10.1016/s0968-0160(02)00084-4.

  22. Hazelwood KJ, O'Rourke M, Stamos VP, McMillan RD, Beigler D, Robb WJ 3rd. Case series report: Early cement-implant interface fixation failure in total knee replacement. Knee. 2015;22(5):424–8. https://doi.org/10.1016/j.knee.2015.02.016.

  23. Kopec M, Milbrandt JC, Kohut N, Kern B, Allan DG. Effect of bone cement viscosity and set time on mantle area in total knee arthroplasty. Am J Orthop (Belle Mead NJ). 2009;38(10):519–22.

    Google Scholar 

  24. Walden JK, Chong AC, Dinh NL, Adrian S, Cusick R, Wooley PH. Intrusion characteristics of three bone cements for tibial component of total knee arthroplasty in a cadaveric bone model. J Surg Orthop Adv. 2016;25(2):74–9.

    Article  Google Scholar 

  25. Birkeland Ø, Espehaug B, Havelin LI, Furnes O. Bone cement product and failure in total knee arthroplasty. Acta Orthop. 2017;88(1):75–81. https://doi.org/10.1080/17453674.2016.1256937.

  26. Cawley DT, Kelly N, Simpkin A, Shannon FJ, McGarry JP. Full and surface tibial cementation in total knee arthroplasty: a biomechanical investigation of stress distribution and remodeling in the tibia. Clin Biomech (Bristol, Avon). 2012;27(4):390–7. https://doi.org/10.1016/j.clinbiomech.2011.10.011.

  27. Peters CL, Craig MA, Mohr RA, Bachus KN. Tibial component fixation with cement: full-versus surface-cementation techniques. Clin Orthop Relat Res. 2003;(409):158–68. https://doi.org/10.1097/01.blo.0000058638.94987.20.

  28. Chong DY, Hansen UN, van der Venne R, Verdonschot N, Amis AA. The influence of tibial component fixation techniques on resorption of supporting bone stock after total knee replacement. J Biomech. 2011;44(5):948–54. https://doi.org/10.1016/j.jbiomech.2010.11.026.

  29. Luring C, Perlick L, Trepte C, Linhardt O, Perlick C, Plitz W, Grifka J. Micromotion in cemented rotating platform total knee arthroplasty: cemented tibial stem versus hybrid fixation. Arch Orthop Trauma Surg. 2006;126(1):45–8. https://doi.org/10.1007/s00402-005-0082-5.

  30. Rossi R, Bruzzone M, Bonasia DE, Ferro A, Castoldi F. No early tibial tray loosening after surface cementing technique in mobile-bearing TKA. Knee Surg Sports Traumatol Arthrosc. 2010;18(10):1360–5. https://doi.org/10.1007/s00167-010-1177-2.

  31. Galasso O, Jenny JY, Saragaglia D, Miehlke RK. Full versus surface tibial baseplate cementation in total knee arthroplasty. Orthopedics. 2013;36(2):e151–8. https://doi.org/10.3928/01477447-20130122-16.

  32. Schlegel UJ, Bruckner T, Schneider M, Parsch D, Geiger F, Breusch SJ. Surface or full cementation of the tibial component in total knee arthroplasty: a matched-pair analysis of mid- to long-term results. Arch Orthop Trauma Surg. 2015;135(5):703–8. https://doi.org/10.1007/s00402-015-2190-1.

  33. Pittman GT, Peters CL, Hines JL, Bachus KN. Mechanical bond strength of the cement-tibial component interface in total knee arthroplasty. J Arthroplasty. 2006;21(6):883–8. https://doi.org/10.1016/j.arth.2005.10.006.

  34. Vertullo CJ, Davey JR. The effect of a tibial baseplate undersurface peripheral lip on cement penetration in total knee arthroplasty. J Arthroplasty. 2001;16(4):487–92. https://doi.org/10.1054/arth.2001.22270.

  35. van de Groes S, de Waal-Malefijt M, Verdonschot N. Probability of mechanical loosening of the femoral component in high flexion total knee arthroplasty can be reduced by rather simple surgical techniques. Knee. 2014;21(1):209–15. https://doi.org/10.1016/j.knee.2013.05.003.

  36. Randelli P, Evola FR, Cabitza P, Polli L, Denti M, Vaienti L. Prophylactic use of antibiotic-loaded bone cement in primary total knee replacement. Knee Surg Sports Traumatol Arthrosc. 2010;18:181–6. https://doi.org/10.1007/s00167-009-0921-y.

  37. Hinarejos P, Guirro P, Puig-Verdie L, Torres-Claramunt R, Leal-Blanquet J, Sanchez-Soler J, Monllau JC. Use of antibiotic-loaded cement in total knee arthroplasty. World J Orthop. 2015;6(11):877–85.https://doi.org/10.5312/wjo.v6.i11.877.

  38. Williams B, Hanson A, Sha B. Diffuse desquamating rash following exposure to vancomycin-impregnated bone cement. Ann Pharmacother. 2014;48(8):1061–5. https://doi.org/10.1177/1060028014529547.

  39. Jämsen E, Huhtala H, Puolakka T, Moilanen T. Risk factors for infection after knee arthroplasty. A register-based analysis of 43,149 cases. J Bone Joint Surg Am. 2009;91(1):38–47. https://doi.org/10.2106/JBJS.G.01686.

  40. Australian Orthopaedic Association. University of Adelaide. National Joint Replacement Registry. Cement in Hip & Knee Arthroplasty. Supplementary Report 2014.

    Google Scholar 

  41. Bohm E, Zhu N, Gu J, de Guia N, Linton C, Anderson T, Paton D, Dunbar M. Does adding antibiotics to cement reduce the need for early revision in total knee arthroplasty? Clin Orthop Relat Res. 2014;472:162–8. https://doi.org/10.1007/s11999-013-3186-1.

  42. Wang H, Lou H, Zhang H, Jiang J, Liu K. Similar survival between uncemented and cemented fixation prostheses in total knee arthroplasty: a meta-analysis and systematic comparative analysis using registers. Knee Surg Sports Traumatol Arthrosc. 2014;22(12):3191–7. https://doi.org/10.1007/s00167-013-2806-3.

  43. Berger RA, Lyon JH, Jacobs JJ, Barden RM, Berkson EM, Sheinkop MB, Rosenberg AG, Galante JO. Problems with cementless total knee arthroplasty at 11 years followup. Clin Orthop Relat Res. 2001;(392):196–207. https://doi.org/10.1097/00003086-200111000-00024.

  44. Vernon BA, Bollinger AJ, Garvin KL, McGarry SV. Osteolytic lesion of the tibial diaphysis after cementless TKA. Orthopedics. 2011;34(3):224. https://doi.org/10.3928/01477447-20110124-30.

  45. Parker DA, Rorabeck CH, Bourne RB. Long-term followup of cementless versus hybrid fixation for total knee arthroplasty. Clin Orthop Relat Res. 2001;(388):68–76. https://doi.org/10.1097/00003086-200107000-00011.

  46. Zhang ZH, Shen B, Yang J, Zhou ZK, Kang PD, Pei FX. Risk factors for venous thromboembolism of total hip arthroplasty and total knee arthroplasty: a systematic review of evidences in ten years. BMC Musculoskelet Disord. 2015;16:24. https://doi.org/10.1186/s12891-015-0470-0.

  47. Nakama GY, Peccin MS, Almeida GJ, Lira Neto Ode A, Queiroz AA, Navarro RD. Cemented, cementless or hybrid fixation options in total knee arthroplasty for osteoarthritis and other non-traumatic diseases. Cochrane Database Syst Rev. 2012;10:CD006193. https://doi.org/10.1002/14651858.CD006193.pub2.

  48. Crook PD, Owen JR, Hess SR, Al-Humadi SM, Wayne JS, Jiranek WA. Initial stability of cemented vs cementless tibial components under cyclic load. J Arthroplasty. 2017. pii: S0883–5403(17)30275-9. https://doi.org/10.1016/j.1164arth.2017.03.039.

  49. Andersen MR, Winther NS, Lind T, Schrøder HM, Flivik G, Petersen MM. Low preoperative BMD is related to high migration of tibia components in uncemented TKA-92 patients in a combined DEXA and RSA study with 2-year follow-up. J Arthroplasty. 2017. pii: S0883-5403(17)30150-X. https://doi.org/10.1016/j.arth.2017.02.032.

  50. Harwin SF, Kester MA, Malkani AL, Manley MT. Excellent fixation achieved with cementless posteriorly stabilized total knee arthroplasty. J Arthroplasty. 2013;28(1):7–13. https://doi.org/10.1016/j.arth.2012.06.006.

  51. 13th Annual Report 2016 National Joint Registry for England, Wales, Northern Ireland and the Isle of Man. www.njrcentre.org.uk

  52. Franceschetti E, Torre G, Palumbo A, Papalia R, Karlsson J, Ayeni OR, Samuelsson K, Franceschi F. No difference between cemented and cementless total knee arthroplasty in young patients: a review of the evidence. Knee Surg Sports Traumatol Arthrosc. 2017 25: 1749–56. https://doi.org/10.1007/s00167-017-4519-5.

  53. Kim YH, Park JW, Lim HM, Park ES. Cementless and cemented total knee arthroplasty in patients younger than fifty five years. Which is better? Int Orthop. 2014;38(2):297–303. https://doi.org/10.1007/s00264-013-2243-4.

  54. Newman JM, Khlopas A, Chughtai M, Gwam CU, Mistry JB, Yakubek GA, Harwin SF, Mont MA. Cementless total knee arthroplasty in patients older than 75 years. J Knee Surg. 2017; https://doi.org/10.1055/s-0037-1599253.

  55. Bagsby DT, Issa K, Smith LS, Elmallah RK, Mast LE, Harwin SF, Mont MA, Bhimani SJ, Malkani AL. Cemented vs cementless total knee arthroplasty in morbidly obese patients. J Arthroplasty. 2016;31(8):1727–31. https://doi.org/10.1016/j.arth.2016.01.025.

  56. Lizaur-Utrilla A, Miralles-Muñoz FA, Sanz-Reig J, Collados-Maestre I. Cementless total knee arthroplasty in obese patients: a prospective matched study with follow-up of 5–10 years. J Arthroplasty. 2014;29(6):1192–6. https://doi.org/10.1016/j.arth.2013.11.011.

  57. Jackson MP, Sexton SA, Walter WL, Walter WK, Zicat BA. The impact of obesity on the mid-term outcome of cementless total knee replacement. J Bone Joint Surg Br. 2009;91(8):1044–8. https://doi.org/10.1302/0301-620X.91B8.22129.

  58. Bayley JC, Scott RD, Ewald FC, Holmes GB Jr. Failure of the metal-backed patellar component after total knee replacement. J Bone Joint Surg Am. 1988;70(5):668–74.

    Article  CAS  Google Scholar 

  59. Hedley AK. Minimum 5-year results with Duracon press-fit metal-backed patellae. Am J Orthop (Belle Mead NJ). 2016;45(2):61–5.

    Google Scholar 

  60. Nodzo SR, Hohman DW, Hoy AS, Bayers-Thering M, Pavlesen S, Phillips MJ. Short term outcomes of a hydroxyapatite coated metal backed patella. J Arthroplasty. 2015;30(8):1339–43. https://doi.org/10.1016/j.arth.2015.02.029.

  61. Chan JY, Giori NJ. Uncemented metal-backed tantalum patellar components in total knee arthroplasty have a high fracture rate at midterm follow-up. J Arthroplasty. 2017. pii: S0883-5403(17)30180-8. https://doi.org/10.1016/j.arth.2017.02.062.

  62. Nielsen PT, Hansen EB, Rechnagel K. Cementless total knee arthroplasty in unselected cases of osteoarthritis and rheumatoid arthritis. A 3-year follow-up study of 103 cases. J Arthroplasty. 1992;7(2):137–43. https://doi.org/10.1016/0883-5403(92)90006-c.

  63. Buchheit J, Serre A, Bouilloux X, Puyraveau M, Jeunet L, Garbuio P. Cementless total knee arthroplasty in chronic inflammatory rheumatism. Eur J Orthop Surg Traumatol. 2014;24(8):1489–98. https://doi.org/10.1007/s00590-013-1316-9.

  64. Sharma S, Nicol F, Hullin MG, McCreath SW. Long-term results of the uncemented low contact stress total knee replacement in patients with rheumatoid arthritis. J Bone Joint Surg Br. 2005;87(8):1077–80. https://doi.org/10.1302/0301-620X.87B8.16133.

  65. Woo YK, Kim KW, Chung JW, Lee HS. Average 10.1-year follow-up of cementless total knee arthroplasty in patients with rheumatoid arthritis. Can J Surg. 2011;54(3):179–84. https://doi.org/10.1503/cjs.000910.

  66. Duffy GP, Murray BE, Trousdale RR. Hybrid total knee arthroplasty analysis of component failures at an average of 15 years. J Arthroplasty. 2007;22(8):1112–5. https://doi.org/10.1016/j.arth.2007.04.007.

  67. McLaughlin JR, Lee KR. Hybrid total knee arthroplasty: 10- to 16-year follow-up. Orthopedics. 2014;37(11):e975–7. https://doi.org/10.3928/01477447-20141023-53.

  68. Pelt CE, Gililland JM, Doble J, Stronach BM, Peters CL. Hybrid total knee arthroplasty revisited: midterm followup of hybrid versus cemented fixation in total knee arthroplasty. Biomed Res Int. 2013;2013:854871. https://doi.org/10.1155/2013/854871.

  69. Yang JH, Yoon JR, Oh CH, Kim TS. Hybrid component fixation in total knee arthroplasty: minimum of 10-year follow-up study. J Arthroplasty. 2012;27(6):1111–8. https://doi.org/10.1016/j.arth.2011.09.019.

  70. Lass R, Kubista B, Holinka J, Pfeiffer M, Schuller S, Stenicka S, Windhager R, Giurea A. Comparison of cementless and hybrid cemented total knee arthroplasty. Orthopedics. 2013;36(4):e420–7. https://doi.org/10.3928/01477447-20130327-16.

  71. Drexler M, Dwyer T, Marmor M, Abolghasemian M, Sternheim A, Cameron HU. Cementless fixation in total knee arthroplasty: down the boulevard of broken dreams - opposes. J Bone Joint Surg Br. 2012;94(11 Suppl A):85–9. https://doi.org/10.1302/0301-620X.94B11.30827.

  72. Voigt JD, Mosier M. Hydroxyapatite (HA) coating appears to be of benefit for implant durability of tibial components in primary total knee arthroplasty. Acta Orthop. 2011;82(4):448–59. https://doi.org/10.3109/17453674.2011.590762.

  73. Hu B, Chen Y, Zhu H, Wu H, Yan S. Cementless porous tantalum monoblock tibia vs cemented modular tibia in primary total knee arthroplasty: a meta-analysis. J Arthroplasty. 2017;32(2):666–74. https://doi.org/10.1016/j.arth.2016.09.011.

  74. Henricson A, Nilsson KG. Trabecular metal tibial knee component still stable at 10 years. Acta Orthop. 2016;87(5):504–10. https://doi.org/10.1080/17453674.2016.1205169.

  75. Meneghini RM, de Beaubien BC. Early failure of cementless porous tantalum monoblock tibial components. J Arthroplasty. 2013;28(9):1505–8. https://doi.org/10.1016/j.arth.2013.03.005.

  76. Swedish Knee Arthroplasty Register 2016 Annual Report. www.myknee.se

  77. Mont MA, Pivec R, Issa K, Kapadia BH, Maheshwari A, Harwin SF. Long-term implant survivorship of cementless total knee arthroplasty: a systematic review of the literature and meta-analysis. J Knee Surg. 2014;27(5):369–76. https://doi.org/10.1055/s-0033-1361952.

  78. Petursson G, Fenstad AM, Havelin LI, Gøthesen Ø, Lygre SH, Röhrl SM, Furnes O. Better survival of hybrid total knee arthroplasty compared to cemented arthroplasty. Acta Orthop. 2015;86(6):714–20. https://doi.org/10.3109/17453674.2015.1073539.

  79. 2016 Annual Report, National Joint Replacement Registry of the Australian Orthopedic Association. www.aoanjrr.sahmri.com

  80. Robertsson O, Bizjajeva S, Fenstad AM, Furnes O, Lidgren L, Mehnert F, Odgaard A, Pedersen AB, Havelin LI. Knee arthroplasty in Denmark, Norway and Sweden. A pilot study from the Nordic Arthroplasty Register Association. Acta Orthop. 2010;81(1):82–9. https://doi.org/10.3109/17453671003685442.

  81. Faour-Martín O, Valverde-García JA, Martín-Ferrero MA, Vega-Castrillo A, de la Red Gallego MA, Suárez de Puga CC, Amigo-Liñares L. Oxford phase 3 unicondylar knee arthroplasty through a minimally invasive approach: long-term results. Int Orthop. 2013;37(5):833–8. https://doi.org/10.1007/s00264-013-1830-8.

  82. Foran JR, Brown NM, Della Valle CJ, Berger RA, Galante JO. Long-term survivorship and failure modes of unicompartmental knee arthroplasty. Clin Orthop Relat Res. 2013;471(1):102–8. https://doi.org/10.1007/s11999-012-2517-y.

  83. Niinimäki T, Eskelinen A, Mäkelä K, Ohtonen P, Puhto AP, Remes V. Unicompartmental knee arthroplasty survivorship is lower than TKA survivorship: a 27-year Finnish registry study. Clin Orthop Relat Res. 2014;472(5):1496–501. https://doi.org/10.1007/s11999-013-3347-2.

  84. Epinette JA. Long lasting outcome of hydroxyapatite-coated implants in primary knee arthroplasty: a continuous series of two hundred and seventy total knee arthroplasties at fifteen to twenty two years of clinical follow-up. Int Orthop. 2014;38(2):305–11. https://doi.org/10.1007/s00264-013-2246-1.

  85. Baker P, Jameson S, Critchley R, Reed M, Gregg P, Deehan D. Center and surgeon volume influence the revision rate following unicondylar knee replacement: an analysis of 23,400 medial cemented unicondylar knee replacements. J Bone Joint Surg Am. 2013;95(8):702–9. https://doi.org/10.2106/JBJS.L.00520.

  86. Schroeder C, Grupp TM, Fritz B, Schilling C, Chevalier Y, Utzschneider S, Jansson V. The influence of third-body particles on wear rate in unicondylar knee arthroplasty: a wear simulator study with bone and cement debris. J Mater Sci Mater Med. 2013;24(5):1319–25. https://doi.org/10.1007/s10856-013-4883-8.

  87. Miskovsky C, Whiteside LA, White SE. The cemented unicondylar knee arthroplasty. An in vitro comparison of three cement techniques. Clin Orthop Relat Res. 1992;(284):215–20.

    Google Scholar 

  88. Jaeger S, Rieger JS, Bruckner T, Kretzer JP, Clarius M, Bitsch RG. The protective effect of pulsed lavage against implant subsidence and micromotion for cemented tibial unicompartmental knee components: an experimental cadaver study. J Arthroplasty. 2014;29(4):727–32. https://doi.org/10.1016/j.arth.2013.09.020.

  89. Seeger JB, Jaeger S, Bitsch RG, Mohr G, Röhner E, Clarius M. The effect of bone lavage on femoral cement penetration and interface temperature during Oxford unicompartmental knee arthroplasty with cement. J Bone Joint Surg Am. 2013;95(1):48–53. https://doi.org/10.2106/JBJS.K.01116.

  90. Walker PS, Parakh DS, Chaudhary ME, Wei CS. Comparison of interface stresses and strains for onlay and inlay unicompartmental tibial components. J Knee Surg. 2011;24(2):109–15. https://doi.org/10.1055/s-0031-1280873.

  91. Bert JM. 10-year survivorship of metal-backed, unicompartmental arthroplasty. J Arthroplasty. 1998;13(8):901–5. https://doi.org/10.1016/s0883-5403(98)90197-8.

  92. Blaney J, Harty H, Doran E, O'Brien S, Hill J, Dobie I, Beverland D. Five-year clinical and radiological outcomes in 257 consecutive cementless Oxford medial unicompartmental knee arthroplasties. Bone Joint J. 2017;99-B(5):623–31. https://doi.org/10.1302/0301-620X.99B5.BJJ-2016-0760.R1.

  93. Liddle AD, Pandit H, O'Brien S, Doran E, Penny ID, Hooper GJ, Burn PJ, Dodd CA, Beverland DE, Maxwell AR, Murray DW. Cementless fixation in Oxford unicompartmental knee replacement: a multicentre study of 1000 knees. Bone Joint J. 2013;95-B(2):181–7. https://doi.org/10.1302/0301-620X.95B2.30411.

  94. Kendrick BJ, Kaptein BL, Valstar ER, Gill HS, Jackson WF, Dodd CA, Price AJ, Murray DW. Cemented versus cementless Oxford unicompartmental knee arthroplasty using radiostereometric analysis: a randomised controlled trial. Bone Joint J. 2015;97-B(2):185–91. https://doi.org/10.1302/0301-620X.97B2.34331.

  95. Campi S, Pandit HG, Dodd CA, Murray DW. Cementless fixation in medial unicompartmental knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2017;25(3):736–45. https://doi.org/10.1007/s00167-016-4244-5.

  96. van der List JP, Sheng DL, Kleeblad LJ, Chawla H, Pearle AD. Outcomes of cementless unicompartmental and total knee arthroplasty: a systematic review. Knee. 2017; 24:497–507. https://doi.org/10.1016/j.knee.2016.10.010.

  97. Ahn JH, Jeong SH, Lee SH. The effect of multiple drilling on a sclerotic proximal tibia during total knee arthroplasty. Int Orthop. 2015;39(6):1077–83. https://doi.org/10.1007/s00264-014-2551-3.

  98. Beaupré LA, Al-Yamani M, Huckell JR, Johnston DW. Hydroxyapatite-coated tibial implants compared with cemented tibial fixation in primary total knee arthroplasty. A randomized trial of outcomes at five years. J Bone Joint Surg Am. 2007;89(10):2204–11. https://doi.org/10.2106/JBJS.F.01431.

  99. Cross MJ, Parish EN. A hydroxyapatite-coated total knee replacement: prospective analysis of 1000 patients. J Bone Joint Surg Br. 2005;87(8):1073–6. https://doi.org/10.1302/0301-620X.87B8.15772.

  100. De Martino I, D’Apolito R, Sculco PK, Poultsides LA, Gasparini G. Total knee arthroplasty using cementless porous tantalum monoblock tibial component: a minimum 10-year follow-up. J Arthroplasty. 2016;31(10):2193–8. https://doi.org/10.1016/j.arth.2016.03.057.

  101. Epinette JA, Brunschweiler B, Mertl P, Mole D, Cazenave A. French Society for Hip and Knee. Unicompartmental knee arthroplasty modes of failure: wear is not the main reason for failure: a multicentre study of 418 failed knees. Orthop Traumatol Surg Res. 2012;98(6 Suppl):S124–30. https://doi.org/10.1016/j.otsr.2012.07.002.

  102. Gerscovich D, Schwing C, Unger A. Long-term results of a porous tantalum monoblock tibia component: clinical and radiographic results at follow-up of 10 years. Arthroplast Today. 2017;3(3):192–6. https://doi.org/10.1016/j.artd.2017.02.004.

  103. Harwin SF, Patel NK, Chughtai M, Khlopas A, Ramkumar PN, Roche M, Mont MA. Outcomes of newer generation cementless total knee arthroplasty: beaded periapatite-coated vs highly porous titanium-coated implants. J Arthroplasty. 2017;32(7):2156–60. https://doi.org/10.1016/j.arth.2017.01.044.

  104. Kwong LM, Nielsen ES, Ruiz DR, Hsu AH, Dines MD, Mellano CM. Cementless total knee replacement fixation: a contemporary durable solution—affirms. Bone Joint J. 2014;96-B(11 Supple A):87–92. https://doi.org/10.1302/0301-620X.96B11.34327.

  105. Liu D, Graham D, Gillies K, Gillies RM. Effects of tourniquet use on quadriceps function and pain in total knee arthroplasty. Knee Surg Relat Res. 2014;26(4):207–13. https://doi.org/10.5792/ksrr.2014.26.4.207.

  106. Melton JT, Mayahi R, Baxter SE, Facek M, Glezos C. Long-term outcome in an uncemented, hydroxyapatite-coated total knee replacement: a 15- to 18-yearmsurvivorship analysis. J Bone Joint Surg Br. 2012;94(8):1067–70. https://doi.org/10.1302/0301-620X.94B8.28350.

  107. Nam D, Kopinski JE, Meyer Z, Rames RD, Nunley RM, Barrack RL. Perioperative and early postoperative comparison of a modern cemented and cementless total knee arthroplasty of the same design. J Arthroplasty. 2017;(32):2151–5. https://doi.org/10.1016/j.arth.2017.01.051.

  108. Niemeläinen M, Skyttä ET, Remes V, Mäkelä K, Eskelinen A. Total knee arthroplasty with an uncemented trabecular metal tibial component: a registry-based analysis. J Arthroplasty. 2014;29(1):57–60. https://doi.org/10.1016/j.arth.2013.04.014.

  109. Prudhon JL, Verdier R. Cemented or cementless total knee arthroplasty? Comparative results of 200 cases at a minimum follow-up of 11 years. SICOT J. 2017;3:70. https://doi.org/10.1051/sicotj/2017046.

  110. Pulido L, Abdel MP, Lewallen DG, Stuart MJ, Sanchez-Sotelo J, Hanssen AD, Pagnano MW. The Mark Coventry Award: trabecular metal tibial components were durable and reliable in primary total knee arthroplasty: a randomized clinical trial. Clin Orthop Relat Res. 2015;473(1):34–42. https://doi.org/10.1007/s11999-014-3585-y.

  111. Tai CC, Cross MJ. Five- to 12-year follow-up of a hydroxyapatite-coated, cementless total knee replacement in young, active patients. J Bone Joint Surg Br. 2006;88(9):1158–63. https://doi.org/10.1302/0301-620X.88B9.17789.

  112. Waddell DD, Sedacki K, Yang Y, Fitch DA. Early radiographic and functional outcomes of a cancellous titanium-coated tibial component for total knee arthroplasty. Musculoskelet Surg. 2016;100(1):71–4. https://doi.org/10.1007/s12306-015-0382-z.

  113. Wang J, Zhu C, Cheng T, Peng X, Zhang W, Qin H, Zhang X. A systematic review and meta-analysis of antibiotic-impregnated bone cement use in primary total hip or knee arthroplasty. PLoS One. 2013;8:e82745. https://doi.org/10.1371/journal.pone.0082745.

  114. Winther NS, Jensen CL, Jensen CM, Lind T, Schrøder HM, Flivik G, Petersen MM. Comparison of a novel porous titanium construct (Regenerex®) to a well proven porous coated tibial surface in cementless total knee arthroplasty—a prospective randomized RSA study with two-year follow-up. Knee. 2016;23(6):1002–11. https://doi.org/10.1016/j.knee.2016.09.010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reha N. Tandogan .

Editor information

Editors and Affiliations

39.1 Electronic Supplementary Materials

Cementing technique in TKA (MP4 238751 kb)

Cementing technique of unicondylar arthroplasty (MP4 161137 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tandogan, R.N., Bekmez, S., Polat, M. (2022). Optimal Implant Fixation in Knee Arthroplasty: Cemented Versus Cementless Knee Arthroplasty. In: Becker, R., Hirschmann, M.T., Kort, N.P. (eds) Basics in Primary Knee Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-030-58178-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58178-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58177-0

  • Online ISBN: 978-3-030-58178-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics