Skip to main content

In Vitro Assays for Nanoparticle—Cancer Cell Interaction Studies

  • Chapter
  • First Online:
Bio-Nanomedicine for Cancer Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1295))

Abstract

Nanotechnology is a rapid-growing field with an extreme potential to revolutionize cancer treatments. However, despite the rapid advances, the clinical translation is still scarce. One of the main hurdles contributing for this setback is the lack of reliable in vitro models for preclinical testing capable of predicting the outcomes in an in vivo setting. In fact, the use of 2D monolayers, considered the gold-standard in vitro technique, leads to the creation of misleading data that might not be completely observed in in vivo or clinical setting. Thus, there is the need to use more complex models capable of better mimicking the tumor microenvironment. For that purpose, the development and use of multicellular tumor spheroids, three-dimensional (3D) cell cultures which recapitulate numerous aspects of the tumors, represents an advantageous approach to test the developed anticancer therapies. In this chapter, we identify and discuss the advantages of the use of these 3D cellular models compared to the 2D models and how they can be utilized to study nanoparticle-cancer cell interaction in a more reliable way to predict the treatment outcome in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68(6), 394–424.

    Google Scholar 

  2. Brannon-Peppas, L., & Blanchette, J. O. (2004). Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 56(11), 1649–1659.

    Article  CAS  PubMed  Google Scholar 

  3. Chakraborty, S., & Rahman, T. (2012). The difficulties in cancer treatment. Ecancermedicalscience, 6, ed16.

    PubMed  PubMed Central  Google Scholar 

  4. Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews. Cancer, 17(1), 20–37.

    Article  CAS  PubMed  Google Scholar 

  5. Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760.

    Article  CAS  PubMed  Google Scholar 

  6. van der Meel, R., Sulheim, E., Shi, Y., Kiessling, F., Mulder, W. J. M., & Lammers, T. (2019). Smart cancer nanomedicine. Nature Nanotechnology, 14(11), 1007–1017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Figueiredo, P., Bauleth-Ramos, T., Hirvonen, J., Sarmento, B., & Santos, H. A. (2018). Chapter 1 – The emerging role of multifunctional theranostic materials in cancer nanomedicine. In J. Conde (Ed.), Handbook of nanomaterials for cancer theranostics (pp. 1–31). Elsevier: Amsterdam, The Netherlands.

    Google Scholar 

  8. Balasubramanian, V., Liu, Z., Hirvonen, J., & Santos, H. A. (2018). Bridging the knowledge of different worlds to understand the big picture of cancer nanomedicines. Advanced Healthcare Materials, 7(1), 1700432.

    Article  CAS  Google Scholar 

  9. Hare, J. I., Lammers, T., Ashford, M. B., Puri, S., Storm, G., & Barry, S. T. (2017). Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Advanced Drug Delivery Reviews, 108, 25–38.

    Article  CAS  PubMed  Google Scholar 

  10. Shreffler, J. W., Pullan, J. E., Dailey, K. M., Mallik, S., & Brooks, A. E. (2019). Overcoming hurdles in nanoparticle clinical translation: The influence of experimental design and surface modification. International Journal of Molecular Sciences, 20(23), 6056.

    Article  CAS  PubMed Central  Google Scholar 

  11. Choi, S. Y., Lin, D., Gout, P. W., Collins, C. C., Xu, Y., & Wang, Y. (2014). Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Advanced Drug Delivery Reviews, 79–80, 222–237.

    Article  PubMed  CAS  Google Scholar 

  12. Thoma, C. R., Zimmermann, M., Agarkova, I., Kelm, J. M., & Krek, W. (2014). 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Advanced Drug Delivery Reviews, 69–70, 29–41.

    Article  PubMed  CAS  Google Scholar 

  13. Chatzinikolaidou, M. (2016). Cell spheroids: The new frontiers in in vitro models for cancer drug validation. Drug Discovery Today, 21(9), 1553–1560.

    Article  CAS  PubMed  Google Scholar 

  14. Niu, N., & Wang, L. (2015). In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics, 16(3), 273–285.

    Article  CAS  PubMed  Google Scholar 

  15. Nunes, A. S., Barros, A. S., Costa, E. C., Moreira, A. F., & Correia, I. J. (2019). 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnology and Bioengineering, 116(1), 206–226.

    Article  CAS  PubMed  Google Scholar 

  16. Ibarrola-Villava, M., Cervantes, A., & Bardelli, A. (2018). Preclinical models for precision oncology. Biochimica Et Biophysica Acta. Reviews on Cancer, 1870(2), 239–246.

    Article  CAS  PubMed  Google Scholar 

  17. Cifola, I., Bianchi, C., Mangano, E., Bombelli, S., Frascati, F., Fasoli, E., Ferrero, S., Di Stefano, V., Zipeto, M. A., Magni, F., Signorini, S., Battaglia, C., & Perego, R. A. (2011). Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues. BMC Cancer, 11, 244.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fabbrizi Maria, R., Duff, T., Oliver, J., & Wilde, C. (2014). Advanced in vitro systems for efficacy and toxicity testing in nanomedicine. European Journal of Nanomedicine, 6, 171.

    Google Scholar 

  19. Weiswald, L. B., Bellet, D., & Dangles-Marie, V. (2015). Spherical cancer models in tumor biology. Neoplasia, 17(1), 1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pampaloni, F., Reynaud, E. G., & Stelzer, E. H. K. (2007). The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology, 8(10), 839–845.

    Article  CAS  PubMed  Google Scholar 

  21. Xu, X., Farach-Carson, M. C., & Jia, X. (2014). Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnology Advances, 32(7), 1256–1268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klimkiewicz, K., Weglarczyk, K., Collet, G., Paprocka, M., Guichard, A., Sarna, M., Jozkowicz, A., Dulak, J., Sarna, T., Grillon, C., & Kieda, C. (2017). A 3D model of tumour angiogenic microenvironment to monitor hypoxia effects on cell interactions and cancer stem cell selection. Cancer Letters, 396, 10–20.

    Article  CAS  PubMed  Google Scholar 

  23. Baker, B. M., & Chen, C. S. (2012). Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. Journal of Cell Science, 125(13), 3015–3024.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lamichhane, S. P., Arya, N., Kohler, E., Xiang, S., Christensen, J., & Shastri, V. P. (2016). Recapitulating epithelial tumor microenvironment in vitro using three dimensional tri-culture of human epithelial, endothelial, and mesenchymal cells. BMC Cancer, 16(1), 581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Cavo, M., Fato, M., Peñuela, L., Beltrame, F., Raiteri, R., & Scaglione, S. (2016). Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model. Scientific Reports, 6, 35367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, T., Lin, B., & Qin, J. (2010). Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device. Lab on a Chip, 10(13), 1671–1677.

    Article  CAS  PubMed  Google Scholar 

  27. Shoval, H., Karsch-Bluman, A., Brill-Karniely, Y., Stern, T., Zamir, G., Hubert, A., & Benny, O. (2017). Tumor cells and their crosstalk with endothelial cells in 3D spheroids. Scientific Reports, 7(1), 10428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W., & Kunz-Schughart, L. A. (2010). Multicellular tumor spheroids: An underestimated tool is catching up again. Journal of Biotechnology, 148(1), 3–15.

    Article  CAS  PubMed  Google Scholar 

  29. Haycock, J. W. (2011). 3D Cell culture: A review of current approaches and techniques. In J. W. Haycock (Ed.), 3D cell culture: Methods and protocols (pp. 1–15). Totowa: Humana Press.

    Chapter  Google Scholar 

  30. Hutmacher, D. W., Horch, R. E., Loessner, D., Rizzi, S., Sieh, S., Reichert, J. C., Clements, J. A., Beier, J. P., Arkudas, A., Bleiziffer, O., & Kneser, U. (2009). Translating tissue engineering technology platforms into cancer research. Journal of Cellular and Molecular Medicine, 13(8a), 1417–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Knight, E., & Przyborski, S. (2015). Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. Journal of Anatomy, 227(6), 746–756.

    Article  PubMed  Google Scholar 

  32. Kunz-Schughart, L. A. (1999). Multicellular tumor spheroids: Intermediates between monolayer culture and in vivo tumor. Cell Biology International, 23(3), 157–161.

    Article  CAS  PubMed  Google Scholar 

  33. Huang, B.-W., & Gao, J.-Q. (2018). Application of 3D cultured multicellular spheroid tumor models in tumor-targeted drug delivery system research. Journal of Controlled Release, 270, 246–259.

    Article  CAS  PubMed  Google Scholar 

  34. Froehlich, K., Haeger, J.-D., Heger, J., Pastuschek, J., Photini, S. M., Yan, Y., Lupp, A., Pfarrer, C., Mrowka, R., Schleußner, E., Markert, U. R., & Schmidt, A. (2016). Generation of multicellular breast cancer tumor spheroids: Comparison of different protocols. Journal of Mammary Gland Biology and Neoplasia, 21(3), 89–98.

    Article  PubMed  Google Scholar 

  35. Achilli, T.-M., Meyer, J., & Morgan, J. R. (2012). Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opinion on Biological Therapy, 12(10), 1347–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tung, Y.-C., Hsiao, A. Y., Allen, S. G., Torisawa, Y.-S., Ho, M., & Takayama, S. (2011). High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst, 136(3), 473–478.

    Article  CAS  PubMed  Google Scholar 

  37. Timmins, N. E., & Nielsen, L. K. (2007). Generation of multicellular tumor spheroids by the hanging-drop method. In H. Hauser & M. Fussenegger (Eds.), Tissue engineering (pp. 141–151). Totowa: Humana Press.

    Chapter  Google Scholar 

  38. Sutherland, R. M., McCredie, J. A., & Inch, W. R. (1971). Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. JNCI: Journal of the National Cancer Institute, 46(1), 113–120.

    CAS  PubMed  Google Scholar 

  39. Tang, Y., Liu, J., & Chen, Y. (2016). Agarose multi-wells for tumour spheroid formation and anti-cancer drug test. Microelectronic Engineering, 158, 41–45.

    Article  CAS  Google Scholar 

  40. Costa, E. C., de Melo-Diogo, D., Moreira, A. F., Carvalho, M. P., & Correia, I. J. (2018). Spheroids formation on non-adhesive surfaces by liquid overlay technique: Considerations and practical approaches. Biotechnology Journal, 13(1), 1700417.

    Article  CAS  Google Scholar 

  41. Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D., & Takayama, S. (2012). Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. Journal of Controlled Release, 164(2), 192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu, H., & Stenzel, M. H. (2018). Multicellular tumor spheroids (MCTS) as a 3D in vitro evaluation tool of nanoparticles. Small, 14(13), 1702858.

    Article  CAS  Google Scholar 

  43. Gebhard, C., Gabriel, C., & Walter, I. (2016). Morphological and immunohistochemical characterization of canine osteosarcoma spheroid cell cultures. Anatomia, Histologia, Embryologia, 45(3), 219–230.

    Article  CAS  PubMed  Google Scholar 

  44. Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F., & Ebner, R. (2004). The use of 3-D cultures for high-throughput screening: The multicellular spheroid model. Journal of Biomolecular Screening, 9(4), 273–285.

    Article  CAS  PubMed  Google Scholar 

  45. Lin, R.-Z., & Chang, H.-Y. (2008). Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnology Journal, 3(9–10), 1172–1184.

    Article  CAS  PubMed  Google Scholar 

  46. Katt, M. E., Placone, A. L., Wong, A. D., Xu, Z. S., & Searson, P. C. (2016). In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Frontiers in Bioengineering and Biotechnology, 4, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rohwer, N., & Cramer, T. (2011). Hypoxia-mediated drug resistance: Novel insights on the functional interaction of HIFs and cell death pathways. Drug Resistance Updates, 14(3), 191–201.

    Article  CAS  PubMed  Google Scholar 

  48. Trédan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. JNCI: Journal of the National Cancer Institute, 99(19), 1441–1454.

    Article  PubMed  CAS  Google Scholar 

  49. Swietach, P., Hulikova, A., Patiar, S., Vaughan-Jones, R. D., & Harris, A. L. (2012). Importance of intracellular pH in determining the uptake and efficacy of the weakly basic chemotherapeutic drug, doxorubicin. PloS One, 7(4), e35949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Majety, M., Pradel, L. P., Gies, M., & Ries, C. H. (2015). Fibroblasts influence survival and therapeutic response in a 3D co-culture model. PLoS One, 10(6), e0127948.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lee, J. W., Shin, D. H., & Roh, J. L. (2018). Development of an in vitro cell-sheet cancer model for chemotherapeutic screening. Theranostics, 8(14), 3964–3973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Correia, A. L., & Bissell, M. J. (2012). The tumor microenvironment is a dominant force in multidrug resistance. Drug Resistance Updates, 15(1), 39–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun, Y. (2016). Tumor microenvironment and cancer therapy resistance. Cancer Letters, 380(1), 205–215.

    Article  CAS  PubMed  Google Scholar 

  54. Pickup, M. W., Mouw, J. K., & Weaver, V. M. (2014). The extracellular matrix modulates the hallmarks of cancer. EMBO Reports, 15(12), 1243–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Costa, E. C., Moreira, A. F., de Melo-Diogo, D., Gaspar, V. M., Carvalho, M. P., & Correia, I. J. (2016). 3D tumor spheroids: An overview on the tools and techniques used for their analysis. Biotechnology Advances, 34(8), 1427–1441.

    Article  PubMed  Google Scholar 

  56. Longati, P., Jia, X., Eimer, J., Wagman, A., Witt, M.-R., Rehnmark, S., Verbeke, C., Toftgård, R., Löhr, M., & Heuchel, R. L. (2013). 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer, 13(1), 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nath, S., & Devi, G. R. (2016). Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacology and Therapeutics, 163, 94–108.

    Article  CAS  PubMed  Google Scholar 

  58. Ma, H.-L., Jiang, Q., Han, S., Wu, Y., Tomshine, J. C., Wang, D., Gan, Y., Zou, G., & Liang, X.-J. (2012). Multicellular tumor spheroids as an in vivo–like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration. Molecular Imaging, 11(6), 7290.2012.00012.

    Article  CAS  Google Scholar 

  59. Zanoni, M., Piccinini, F., Arienti, C., Zamagni, A., Santi, S., Polico, R., Bevilacqua, A., & Tesei, A. (2016). 3D tumor spheroid models for in vitro therapeutic screening: A systematic approach to enhance the biological relevance of data obtained. Scientific Reports, 6, 19103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fang, Y., & Eglen, R. M. (2017). Three-dimensional cell cultures in drug discovery and development. Slas Discovery: Advancing Life Sciences R&D, 22(5), 456–472.

    Article  CAS  Google Scholar 

  61. Rodrigues, T., Kundu, B., Silva-Correia, J., Kundu, S. C., Oliveira, J. M., Reis, R. L., & Correlo, V. M. (2018). Emerging tumor spheroids technologies for 3D in vitro cancer modeling. Pharmacology and Therapeutics, 184, 201–211.

    Article  CAS  PubMed  Google Scholar 

  62. Hoarau-Véchot, J., Rafii, A., Touboul, C., & Pasquier, J. (2018). Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancer-microenvironment interactions? International Journal of Molecular Sciences, 19(1), 181.

    Article  PubMed Central  CAS  Google Scholar 

  63. Li, Y., Wang, J., Wientjes, M. G., & Au, J. L. S. (2012). Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Advanced Drug Delivery Reviews, 64(1), 29–39.

    Article  CAS  PubMed  Google Scholar 

  64. Ozcelikkale, A., Ghosh, S., & Han, B. (2013). Multifaceted transport characteristics of nanomedicine: Needs for characterization in dynamic environment. Molecular Pharmaceutics, 10(6), 2111–2126.

    Article  CAS  PubMed  Google Scholar 

  65. Shi, W. B., Le, V. M., Gu, C. H., Zheng, Y. H., Lang, M. D., Lu, Y. H., & Liu, J. W. (2014). Overcoming multidrug resistance in 2D and 3D culture models by controlled drug chitosan‐graft poly(caprolactone)‐based nanoparticles. Journal of Pharmaceutical Sciences, 103(4), 1064–1074.

    Article  PubMed  CAS  Google Scholar 

  66. Biondi, M., Guarnieri, D., Yu, H., Belli, V., & Netti, P. A. (2013). Sub-100 nm biodegradable nanoparticles: In vitro release features and toxicity testing in 2D and 3D cell cultures. Nanotechnology, 24(4), 045101.

    Article  PubMed  Google Scholar 

  67. Solomon, M. A., Lemera, J., & D’Souza, G. G. M. (2016). Development of an in vitro tumor spheroid culture model amenable to high-throughput testing of potential anticancer nanotherapeutics. Journal of Liposome Research, 26(3), 246–260.

    Article  CAS  PubMed  Google Scholar 

  68. Millard, M., Yakavets, I., Zorin, V., Kulmukhamedova, A., Marchal, S., & Bezdetnaya, L. (2017). Drug delivery to solid tumors: The predictive value of the multicellular tumor spheroid model for nanomedicine screening. International Journal of Nanomedicine, 12, 7993–8007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tchoryk, A., Taresco, V., Argent, R. H., Ashford, M., Gellert, P. R., Stolnik, S., Grabowska, A., & Garnett, M. C. (2019). Penetration and uptake of nanoparticles in 3D tumor spheroids. Bioconjugate Chemistry, 30(5), 1371–1384.

    Article  CAS  PubMed  Google Scholar 

  70. Durymanov, M., Kroll, C., Permyakova, A., & Reineke, J. (2019). Role of endocytosis in nanoparticle penetration of 3D pancreatic cancer spheroids. Molecular Pharmaceutics, 16(3), 1074–1082.

    Article  CAS  PubMed  Google Scholar 

  71. Huo, S., Ma, H., Huang, K., Liu, J., Wei, T., Jin, S., Zhang, J., He, S., & Liang, X. J. (2013). Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Research, 73(1), 319–330.

    Article  CAS  PubMed  Google Scholar 

  72. Huang, K., Ma, H., Liu, J., Huo, S., Kumar, A., Wei, T., Zhang, X., Jin, S., Gan, Y., Wang, P. C., He, S., Zhang, X., & Liang, X. J. (2012). Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano, 6(5), 4483–4493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Albanese, A., Lam, A. K., Sykes, E. A., Rocheleau, J. V., & Chan, W. C. W. (2013). Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nature Communications, 4(1), 2718.

    Article  PubMed  CAS  Google Scholar 

  74. Tang, L., Yang, X., Yin, Q., Cai, K., Wang, H., Chaudhury, I., Yao, C., Zhou, Q., Kwon, M., Hartman, J. A., Dobrucki, I. T., Dobrucki, L. W., Borst, L. B., Lezmi, S., Helferich, W. G., Ferguson, A. L., Fan, T. M., & Cheng, J. (2014). Investigating the optimal size of anticancer nanomedicine. Proceedings of the National Academy of Sciences, 111(43), 15344–15349.

    Article  CAS  Google Scholar 

  75. Stylianopoulos, T., Poh, M.-Z., Insin, N., Bawendi, M. G., Fukumura, D., Munn, L. L., & Jain, R. K. (2010). Diffusion of particles in the extracellular matrix: The effect of repulsive electrostatic interactions. Biophysical Journal, 99(5), 1342–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Suzuki, S., Itakura, S., Matsui, R., Nakayama, K., Nishi, T., Nishimoto, A., Hama, S., & Kogure, K. (2017). Tumor microenvironment-sensitive liposomes penetrate tumor tissue via attenuated interaction of the extracellular matrix and tumor cells and accompanying actin depolymerization. Biomacromolecules, 18(2), 535–543.

    Article  CAS  PubMed  Google Scholar 

  77. Jin, S., Ma, X., Ma, H., Zheng, K., Liu, J., Hou, S., Meng, J., Wang, P. C., Wu, X., & Liang, X. J. (2013). Surface chemistry-mediated penetration and gold nanorod thermotherapy in multicellular tumor spheroids. Nanoscale, 5(1), 143–146.

    Article  CAS  PubMed  Google Scholar 

  78. Lieleg, O., Baumgartel, R. M., & Bausch, A. R. (2009). Selective filtering of particles by the extracellular matrix: An electrostatic bandpass. Biophysical Journal, 97(6), 1569–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kostarelos, K., Emfietzoglou, D., Papakostas, A., Yang, W.-H., Ballangrud, Å., & Sgouros, G. (2004). Binding and interstitial penetration of liposomes within avascular tumor spheroids. International Journal of Cancer, 112(4), 713–721.

    Article  CAS  PubMed  Google Scholar 

  80. Ernsting, M. J., Murakami, M., Roy, A., & Li, S. D. (2013). Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. Journal of Controlled Release, 172(3), 782–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dias, D. R., Moreira, A. F., & Correia, I. J. (2016). The effect of the shape of gold core–mesoporous silica shell nanoparticles on the cellular behavior and tumor spheroid penetration. Journal of Materials Chemistry B, 4(47), 7630–7640.

    Article  CAS  PubMed  Google Scholar 

  82. Agarwal, R., Jurney, P., Raythatha, M., Singh, V., Sreenivasan, S. V., Shi, L., & Roy, K. (2015). Effect of shape, size, and aspect ratio on nanoparticle penetration and distribution inside solid tissues using 3D spheroid models. Advanced Healthcare Materials, 4(15), 2269–2280.

    Article  CAS  PubMed  Google Scholar 

  83. Wang, W., Gaus, K., Tilley, R. D., & Gooding, J. J. (2019). The impact of nanoparticle shape on cellular internalisation and transport: What do the different analysis methods tell us? Materials Horizons, 6(8), 1538–1547.

    Article  CAS  Google Scholar 

  84. Lee, K. L., Hubbard, L. C., Hern, S., Yildiz, I., Gratzl, M., & Steinmetz, N. F. (2013). Shape matters: the diffusion rates of TMV rods and CPMV icosahedrons in a spheroid model of extracellular matrix are distinct. Biomaterials Science, 1(6), 581–588.

    Google Scholar 

  85. Chauhan, V. P., Popović, Z., Chen, O., Cui, J., Fukumura, D., Bawendi, M. G., & Jain, R. K. (2011). Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angewandte Chemie International Edition, 50(48), 11417–11420.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, L., Wang, Y., Yang, D., Huang, W., Hao, P., Feng, S., Appelhans, D., Zhang, T., & Zan, X. (2019). Shape effect of nanoparticles on tumor penetration in monolayers versus spheroids. Molecular Pharmaceutics, 16(7), 2902–2911.

    Article  CAS  PubMed  Google Scholar 

  87. You, Y., Hu, H., He, L., & Chen, T. (2015). Differential effects of polymer-surface decoration on drug delivery, cellular retention, and action mechanisms of functionalized mesoporous silica nanoparticles. Chemistry – An Asian Journal, 10(12), 2744–2754.

    Article  CAS  PubMed  Google Scholar 

  88. Figueiredo, P., Sipponen, M. H., Lintinen, K., Correia, A., Kiriazis, A., Yli-Kauhaluoma, J., Österberg, M., George, A., Hirvonen, J., Kostiainen, M. A., & Santos, H. A. (2019). Preparation and characterization of dentin phosphophoryn-derived peptide-functionalized lignin nanoparticles for enhanced cellular uptake. Small, 15(24), 1901427.

    Article  CAS  Google Scholar 

  89. Wang, Y., Yin, S., Mei, L., Yang, Y., Xu, S., He, X., Wang, M., Li, M., Zhang, Z., & He, Q. (2020). A dual receptors-targeting and size-switchable “cluster bomb” co-loading chemotherapeutic and transient receptor potential ankyrin 1 (TRPA-1) inhibitor for treatment of triple negative breast cancer. Journal of Controlled Release, 321, 71–83.

    Article  CAS  PubMed  Google Scholar 

  90. Hortelão, A. C., Carrascosa, R., Murillo-Cremaes, N., Patiño, T., & Sánchez, S. (2019). Targeting 3D bladder cancer spheroids with urease-powered nanomotors. ACS Nano, 13(1), 429–439.

    Article  PubMed  CAS  Google Scholar 

  91. Fan, R., Chuan, D., Hou, H., Chen, H., Han, B., Zhang, X., Zhou, L., Tong, A., Xu, J., & Guo, G. (2019). Development of a hybrid nanocarrier-recognizing tumor vasculature and penetrating the BBB for glioblastoma multi-targeting therapy. Nanoscale, 11(23), 11285–11304.

    Article  CAS  PubMed  Google Scholar 

  92. Hu, C., Yang, X., Liu, R., Ruan, S., Zhou, Y., Xiao, W., Yu, W., Yang, C., & Gao, H. (2018). Coadministration of iRGD with multistage responsive nanoparticles enhanced tumor targeting and penetration abilities for breast cancer therapy. ACS Applied Materials & Interfaces, 10(26), 22571–22579.

    Article  CAS  Google Scholar 

  93. Marino, A., Camponovo, A., Degl’Innocenti, A., Bartolucci, M., Tapeinos, C., Martinelli, C., De Pasquale, D., Santoro, F., Mollo, V., Arai, S., Suzuki, M., Harada, Y., Petretto, A., & Ciofani, G. (2019). Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: Dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment. Nanoscale, 11(44), 21227–21248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chariou, P. L., Lee, K. L., Pokorski, J. K., Saidel, G. M., & Steinmetz, N. F. (2016). Diffusion and uptake of tobacco mosaic virus as therapeutic carrier in tumor tissue: Effect of nanoparticle aspect ratio. The Journal of Physical Chemistry B, 120(26), 6120–6129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goodman, T. T., Olive, P. L., & Pun, S. H. (2007). Increased nanoparticle penetration in collagenase-treated multicellular spheroids. International Journal of Nanomedicine, 2(2), 265–274.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, Y., Liu, Y., Gao, X., Li, X., Niu, X., Yuan, Z., & Wang, W. (2019). Near-infrared-light induced nanoparticles with enhanced tumor tissue penetration and intelligent drug release. Acta Biomaterialia, 90, 314–323.

    Article  CAS  PubMed  Google Scholar 

  97. Wang, X., Luo, J., He, L., Cheng, X., Yan, G., Wang, J., & Tang, R. (2018). Hybrid pH-sensitive nanogels surface-functionalized with collagenase for enhanced tumor penetration. Journal of Colloid and Interface Science, 525, 269–281.

    Article  CAS  PubMed  Google Scholar 

  98. Miranda, M. A., Marcato, P. D., Carvalho, I. P. S., Silva, L. B., Ribeiro, D. L., Amaral, R., Swiech, K., Bastos, J. K., Paschoal, J. A. R., dos Reis, R. B., & Bentley, M. V. L. B. (2019). Assessing the cytotoxic potential of glycoalkaloidic extract in nanoparticles against bladder cancer cells. Journal of Pharmacy and Pharmacology, 71(10), 1520–1531.

    Article  CAS  PubMed  Google Scholar 

  99. Ishiguro, S., Cai, S., Uppalapati, D., Turner, K., Zhang, T., Forrest, W. C., Forrest, M. L., & Tamura, M. (2016). Intratracheal administration of hyaluronan-cisplatin conjugate nanoparticles significantly attenuates lung cancer growth in mice. Pharmaceutical Research, 33(10), 2517–2529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Godugu, C., Patel, A. R., Desai, U., Andey, T., Sams, A., & Singh, M. (2013). AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies. PLoS One, 8(1), e53708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Affram, K. O., Smith, T., Ofori, E., Krishnan, S., Underwood, P., Trevino, J. G., & Agyare, E. (2020). Cytotoxic effects of gemcitabine-loaded solid lipid nanoparticles in pancreatic cancer cells. Journal of Drug Delivery Science and Technology, 55, 101374.

    Article  CAS  PubMed  Google Scholar 

  102. Leite, P. E. C., Pereira, M. R., Harris, G., Pamies, D., dos Santos, L. M. G., Granjeiro, J. M., Hogberg, H. T., Hartung, T., & Smirnova, L. (2019). Suitability of 3D human brain spheroid models to distinguish toxic effects of gold and poly-lactic acid nanoparticles to assess biocompatibility for brain drug delivery. Particle and Fibre Toxicology, 16(1), 22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Zhou, Z., Liu, J., Huang, J., Rees, T. W., Wang, Y., Wang, H., Li, X., Chao, H., & Stang, P. J. (2019). A self-assembled Ru–Pt metallacage as a lysosome-targeting photosensitizer for 2-photon photodynamic therapy. Proceedings of the National Academy of Sciences, 116(41), 20296–20302.

    Article  CAS  Google Scholar 

  104. Ramgolam, K., Lauriol, J., Lalou, C., Lauden, L., Michel, L., de la Grange, P., Khatib, A.-M., Aoudjit, F., Charron, D., Alcaide-Loridan, C., & Al-Daccak, R. (2011). Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function. PLoS One, 6(4), e18784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Horman, S. R., Hogan, C., Reyes, K. D., Lo, F., & Antczak, C. (2015). Challenges and opportunities toward enabling phenotypic screening of complex and 3D cell models. Future Medicinal Chemistry, 7(4), 513–525.

    Article  CAS  PubMed  Google Scholar 

  106. Priwitaningrum, D. L., Blondé, J.-B. G., Sridhar, A., van Baarlen, J., Hennink, W. E., Storm, G., Le Gac, S., & Prakash, J. (2016). Tumor stroma-containing 3D spheroid arrays: A tool to study nanoparticle penetration. Journal of Controlled Release, 244, 257–268.

    Article  CAS  PubMed  Google Scholar 

  107. Wang, H.-X., Zuo, Z.-Q., Du, J.-Z., Wang, Y.-C., Sun, R., Cao, Z.-T., Ye, X.-D., Wang, J.-L., Leong, K. W., & Wang, J. (2016). Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today, 11(2), 133–144.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

T. Bauleth-Ramos acknowledges financial support from Fundação para a Ciência e a Tecnologia (grant no. SFRH/BD/110859/2015). This work was financed by the project NORTE-01-0145-FEDER-000012 by Norte Portugal Regional Operational Programme (NORTE 2020), and COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), under the PORTUGAL 2020 Partnership Agreement, through the (FEDER) Fundo Europeu de Desenvolvimento Regional and by Portuguese funds through (FCT) Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” UID/BIM/04293/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sarmento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bauleth-Ramos, T., Sarmento, B. (2021). In Vitro Assays for Nanoparticle—Cancer Cell Interaction Studies. In: Fontana, F., Santos, H.A. (eds) Bio-Nanomedicine for Cancer Therapy. Advances in Experimental Medicine and Biology, vol 1295. Springer, Cham. https://doi.org/10.1007/978-3-030-58174-9_10

Download citation

Publish with us

Policies and ethics