Skip to main content

A Committee of Convolutional Neural Networks for Image Classification in the Concurrent Presence of Feature and Label Noise

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Abstract

Image classification has become a ubiquitous task. Models trained on good quality data achieve accuracy which in some application domains is already above human-level performance. Unfortunately, real-world data are quite often degenerated by noise existing in features and/or labels. There are numerous papers that handle the problem of either feature or label noise separately. However, to the best of our knowledge, this piece of research is the first attempt to address the problem of concurrent occurrence of both types of noise. Basing on the MNIST, CIFAR-10 and CIFAR-100 datasets, we experimentally prove that the difference by which committees beat single models increases along with noise level, no matter whether it is an attribute or label disruption. Thus, it makes ensembles legitimate to be applied to noisy images with noisy labels. The aforementioned committees’ advantage over single models is positively correlated with dataset difficulty level as well. We propose three committee selection algorithms that outperform a strong baseline algorithm which relies on an ensemble of individual (nonassociated) best models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in NIPS, pp. 153–160 (2007)

    Google Scholar 

  2. Breve, F.A., Zhao, L., Quiles, M.G.: Semi-supervised learning from imperfect data through particle cooperation and competition. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)

    Google Scholar 

  3. Brodley, C.E., Friedl, M.A.: Identifying mislabeled training data. J. Artif. Intell. Res. 11, 131–167 (1999)

    Article  Google Scholar 

  4. Brodley, C.E., Friedl, M.A., et al.: Identifying and eliminating mislabeled training instances. In: Proceedings of the National Conference on Artificial Intelligence, pp. 799–805 (1996)

    Google Scholar 

  5. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  6. Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  Google Scholar 

  7. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642–3649. IEEE (2012)

    Google Scholar 

  8. Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6), 791–812 (1958)

    Article  MathSciNet  Google Scholar 

  9. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40(2), 139–157 (2000). https://doi.org/10.1023/A:1007607513941

    Article  Google Scholar 

  10. Dodge, S., Karam, L.: A study and comparison of human and deep learning recognition performance under visual distortions. In: 2017 26th International Conference on Computer Communication and Networks (ICCCN), pp. 1–7. IEEE (2017)

    Google Scholar 

  11. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2013)

    Article  Google Scholar 

  12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  13. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  14. González, R., Woods, R.: Digital Image Processing, vol. 60. Prentice Hall, Upper Saddle River (2008). ISBN 9780131687288

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  16. Hickey, R.J.: Noise modelling and evaluating learning from examples. Artif. Intell. 82(1–2), 157–179 (1996)

    Article  MathSciNet  Google Scholar 

  17. Hughes, N.P., Roberts, S.J., Tarassenko, L.: Semi-supervised learning of probabilistic models for ECG segmentation. In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 434–437. IEEE (2004)

    Google Scholar 

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  22. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Hoboken (2014)

    MATH  Google Scholar 

  23. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database, 2. ATT Labs (2010). http://yann.lecun.com/exdb/mnist

  24. Nazaré, T.S., da Costa, G.B.P., Contato, W.A., Ponti, M.: Deep convolutional neural networks and noisy images. In: Mendoza, M., Velastín, S. (eds.) CIARP 2017. LNCS, vol. 10657, pp. 416–424. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75193-1_50

    Chapter  Google Scholar 

  25. Pechenizkiy, M., Tsymbal, A., Puuronen, S., Pechenizkiy, O.: Class noise and supervised learning in medical domains: the effect of feature extraction. In: 19th IEEE Symposium on Computer Based Medical Systems (CBMS 2006), pp. 708–713. IEEE (2006)

    Google Scholar 

  26. Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30(4), 838–855 (1992)

    Article  MathSciNet  Google Scholar 

  27. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). https://doi.org/10.1007/BF00116251

    Article  Google Scholar 

  28. Roy, S.S., Hossain, S.I., Akhand, M., Murase, K.: A robust system for noisy image classification combining denoising autoencoder and convolutional neural network. Int. J. Adv. Comput. Sci. Appl. 9(1), 224–235 (2018)

    Google Scholar 

  29. Sagi, O., Rokach, L.: Ensemble learning: a survey. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 8(4), e1249 (2018)

    Article  Google Scholar 

  30. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  32. Snow, R., O’connor, B., Jurafsky, D., Ng, A.Y.: Cheap and fast-but is it good? Evaluating non-expert annotations for natural language tasks. In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pp. 254–263 (2008)

    Google Scholar 

  33. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  34. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study. Artif. Intell. Rev. 22(3), 177–210 (2004). https://doi.org/10.1007/s10462-004-0751-8

    Article  MATH  Google Scholar 

  37. Zhu, X., Wu, X., Chen, Q.: Bridging local and global data cleansing: identifying class noise in large, distributed data datasets. Data Min. Knowl. Disc. 12(2–3), 275–308 (2006). https://doi.org/10.1007/s10618-005-0012-8

    Article  MathSciNet  Google Scholar 

  38. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Kaźmierczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaźmierczak, S., Mańdziuk, J. (2020). A Committee of Convolutional Neural Networks for Image Classification in the Concurrent Presence of Feature and Label Noise. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58112-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58111-4

  • Online ISBN: 978-3-030-58112-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics