Skip to main content

Optimising Tours for the Weighted Traveling Salesperson Problem and the Traveling Thief Problem: A Structural Comparison of Solutions

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12269))

Included in the following conference series:

Abstract

The Traveling Salesperson Problem (TSP) is one of the best-known combinatorial optimisation problems. However, many real-world problems are composed of several interacting components. The Traveling Thief Problem (TTP) addresses such interactions by combining two combinatorial optimisation problems, namely the TSP and the Knapsack Problem (KP). Recently, a new problem called the node weight dependent Traveling Salesperson Problem (W-TSP) has been introduced where nodes have weights that influence the cost of the tour. In this paper, we compare W-TSP and TTP. We investigate the structure of the optimised tours for W-TSP and TTP and the impact of using each others fitness function. Our experimental results suggest (1) that the W-TSP often can be solved better using the TTP fitness function and (2) final W-TSP and TTP solutions show different distributions when compared with optimal TSP or weighted greedy solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://cs.adelaide.edu.au/~optlog/TTP2017Comp/.

  2. 2.

    Note that this step is relevant for the W-TTP only; the W-TSP objective function does not cope with a knapsack limit.

  3. 3.

    GitHub repository: http://github.com/jakobbossek/ttp.

References

  1. Bischl, B., et al.: mlr: Machine learning in R. J. Mach. Learn. Res. 17(170), 1–5 (2016). http://jmlr.org/papers/v17/15-066.html

    MathSciNet  MATH  Google Scholar 

  2. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, W.R., Raghavan, P., Sudan, M.: The minimum latency problem. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, pp. 163–171 (1994)

    Google Scholar 

  3. Bonyadi, M.R., Michalewicz, Z., Barone, L.: The travelling thief problem: the first step in the transition from theoretical problems to realistic problems. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1037–1044 (2013). https://doi.org/10.1109/CEC.2013.6557681

  4. Bonyadi, M.R., Michalewicz, Z., Wagner, M., Neumann, F.: Evolutionary computation for multicomponent problems: opportunities and future directions. In: Datta, S., Davim, J.P. (eds.) Optimization in Industry. MIE, pp. 13–30. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01641-8_2

    Chapter  Google Scholar 

  5. Bossek, J., Casel, K., Kerschke, P., Neumann, F.: The node weight dependent traveling salesperson problem: approximation algorithms and randomized search heuristics (2020). to appear at GECCO 2020

    Google Scholar 

  6. El Yafrani, M., Ahiod, B.: Population-based vs. single-solution heuristics for the travelling thief problem. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 317–324. ACM (2016)

    Google Scholar 

  7. Faulkner, H., Polyakovskiy, S., Schultz, T., Wagner, M.: Approximate approaches to the traveling thief problem. In: Conference on Genetic and Evolutionary Computation (GECCO), pp. 385–392. ACM (2015)

    Google Scholar 

  8. Lawler, E.: The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, Hoboken (1985). https://books.google.com.au/books?id=qbFlMwEACAAJ

    Google Scholar 

  9. Mei, Y., Li, X., Yao, X.: On investigation of interdependence between sub-problems of the travelling thief problem. Soft Comput. 20(1), 157–172 (2016)

    Article  Google Scholar 

  10. Neumann, F., Polyakovskiy, S., Skutella, M., Stougie, L., Wu, J.: A fully polynomial time approximation scheme for packing while traveling. In: Disser, Y., Verykios, V.S. (eds.) ALGOCLOUD 2018. LNCS, vol. 11409, pp. 59–72. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19759-9_5

    Chapter  Google Scholar 

  11. Polyakovskiy, S., Bonyadi, M.R., Wagner, M., Michalewicz, Z., Neumann, F.: A comprehensive benchmark set and heuristics for the traveling thief problem. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 477–484. ACM (2014). https://doi.org/10.1145/2576768.2598249

  12. Reinelt, G.: TSPLIB-a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    Article  Google Scholar 

  13. Therneau, T., Atkinson, B.: rpart: recursive partitioning and regression trees (2018). https://CRAN.R-project.org/package=rpart. R package version 4.1-13

  14. Vitter, J.S., Flajolet, P.: Average-Case Analysis of Algorithms and Data Structures, pp. 431–524. MIT Press, Cambridge (1991)

    MATH  Google Scholar 

  15. Wagner, M., Lindauer, M., Mısır, M., Nallaperuma, S., Hutter, F.: A case study of algorithm selection for the traveling thief problem. J. Heuristics 24(3), 295–320 (2017). https://doi.org/10.1007/s10732-017-9328-y

    Article  Google Scholar 

  16. Wu, J., Polyakovskiy, S., Neumann, F.: On the impact of the renting rate for the unconstrained nonlinear knapsack problem. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 413–419. ACM (2016). https://doi.org/10.1145/2908812.2908862

  17. Wu, J., Polyakovskiy, S., Wagner, M., Neumann, F.: Evolutionary computation plus dynamic programming for the bi-objective travelling thief problem. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 777–784. ACM (2018). https://doi.org/10.1145/3205455.3205488

  18. Wu, J., Wagner, M., Polyakovskiy, S., Neumann, F.: Exact approaches for the travelling thief problem. In: Proceedings of the 11th International Conference on Simulated Evolution and Learning (SEAL), pp. 110–121 (2017)

    Google Scholar 

  19. Yafrani, M.E., Ahiod, B.: Efficiently solving the traveling thief problem using hill climbing and simulated annealing. Inf. Sci. 432, 231–244 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work has been supported by the Australian Research Council (ARC) through grants DP160102401 and DP190103894, and by the South Australian Government through the Research Consortium “Unlocking Complex Resources through Lean Processing”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Bossek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bossek, J., Neumann, A., Neumann, F. (2020). Optimising Tours for the Weighted Traveling Salesperson Problem and the Traveling Thief Problem: A Structural Comparison of Solutions. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58112-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58111-4

  • Online ISBN: 978-3-030-58112-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics