Skip to main content

Continuous Optimization Benchmarks by Simulation

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12269))

Included in the following conference series:

Abstract

Benchmark experiments are required to test, compare, tune, and understand optimization algorithms. Ideally, benchmark problems closely reflect real-world problem behavior. Yet, real-world problems are not always readily available for benchmarking. For example, evaluation costs may be too high, or resources are unavailable (e.g., software or equipment). As a solution, data from previous evaluations can be used to train surrogate models which are then used for benchmarking. The goal is to generate test functions on which the performance of an algorithm is similar to that on the real-world objective function. However, predictions from data-driven models tend to be smoother than the ground-truth from which the training data is derived. This is especially problematic when the training data becomes sparse. The resulting benchmarks may not reflect the landscape features of the ground-truth, are too easy, and may lead to biased conclusions.

To resolve this, we use simulation of Gaussian processes instead of estimation (or prediction). This retains the covariance properties estimated during model training. While previous research suggested a decomposition-based approach for a small-scale, discrete problem, we show that the spectral simulation method enables simulation for continuous optimization problems. In a set of experiments with an artificial ground-truth, we demonstrate that this yields more accurate benchmarks than simply predicting with the Gaussian process model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See the GBEA website, at http://www.gm.fh-koeln.de/~naujoks/gbea/gamesbench_doc.html#subdata. Accessed on 2020-08-03.

  2. 2.

    Reproducible code and a complete set of the presented figures is provided at https://github.com/martinzaefferer/zaef20b. For easily accessible interfaces and demonstrations see https://github.com/martinzaefferer/COBBS.

References

  1. Ardia, D., Mullen, K.M., Peterson, B.G., Ulrich, J.: DEoptim: differential evolution in R, Version 2.2-5 (2020). https://CRAN.R-project.org/package=DEoptim. Accessed 25 Feb 2020

  2. Bartz-Beielstein, T.: How to create generalizable results. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1127–1142. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_56

    Chapter  Google Scholar 

  3. Bartz-Beielstein, T., et al.: SPOT - Sequential Parameter Optimization Toolbox - v20200429 (2020). https://github.com/bartzbeielstein/SPOT/releases/tag/v20200429. Accessed 29 Apr 2020

  4. Cressie, N.A.: Statistics for Spatial Data. Wiley, New York (1993)

    Book  Google Scholar 

  5. Dang, N., Pérez Cáceres, L., De Causmaecker, P., Stützle, T.: Configuring irace using surrogate configuration benchmarks. In: Genetic and Evolutionary Computation Conference (GECCO 2017), pp. 243–250. ACM, Berlin, July 2017

    Google Scholar 

  6. Daniels, S.J., Rahat, A.A.M., Everson, R.M., Tabor, G.R., Fieldsend, J.E.: A suite of computationally expensive shape optimisation problems using computational fluid dynamics. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 296–307. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_24

    Chapter  Google Scholar 

  7. Fischbach, A., Zaefferer, M., Stork, J., Friese, M., Bartz-Beielstein, T.: From real world data to test functions. In: 26th Workshop Computational Intelligence, pp. 159–177. KIT Scientific Publishing, Dortmund, November 2016

    Google Scholar 

  8. Flasch, O.: A modular genetic programming system. Ph.D. thesis, Technische Universität Dortmund, Dortmund, Germany, May 2015

    Google Scholar 

  9. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling. Wiley, New York (2008)

    Book  Google Scholar 

  10. Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS 2014, vol. 2, pp. 2672–2680. MIT Press, Cambridge (2014)

    Google Scholar 

  11. Hansen, N., Auger, A., Mersmann, O., Tusar, T., Brockhoff, D.: COCO: a platform for comparing continuous optimizers in a black-box setting. ArXiv e-prints, August 2016. arXiv:1603.08785v3

  12. Hansen, N., et al.: COmparing Continuous Optimizers: numbbo/COCO on Github, March 2019. https://doi.org/10.5281/zenodo.2594848

  13. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Research report RR-6829, inria-00362633, INRIA, February 2009. https://hal.inria.fr/inria-00362633

  14. Journel, A.G., Huijbregts, C.J.: Mining Geostatistics. Academic Press, London (1978)

    Google Scholar 

  15. Lantuéjoul, C.: Geostatistical Simulation: Models and Algorithms. Springer, Heidelberg (2002)

    Book  Google Scholar 

  16. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  17. Preuss, M., Rudolph, G., Wessing, S.: Tuning optimization algorithms for real-world problems by means of surrogate modeling. In: Genetic and Evolutionary Computation Conference (GECCO 2010), pp. 401–408. ACM, Portland, July 2010

    Google Scholar 

  18. Rudolph, G., Preuss, M., Quadflieg, J.: Two-layered surrogate modeling for tuning optimization metaheuristics. Technical report TR09-2-005, TU Dortmund, Dortmund, Germany. Algorithm Engineering Report, September 2009

    Google Scholar 

  19. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  20. Volz, V., Naujoks, B., Kerschke, P., Tušar, T.: Single- and multi-objective game-benchmark for evolutionary algorithms. In: Genetic and Evolutionary Computation Conference (GECCO2019). ACM, Prague, July 2019

    Google Scholar 

  21. Wang, H., van Stein, B., Emmerich, M., Bäck, T.: Time complexity reduction in efficient global optimization using cluster Kriging. In: Genetic and Evolutionary Computation Conference (GECCO 2017), pp. 889–896. ACM, Berlin, July 2017

    Google Scholar 

  22. Ypma, J., Borchers, H.W., Eddelbuettel, D.: NLoptr vers-1.2.1: R interface to NLopt (2019). http://cran.r-project.org/package=nloptr. Accessed 20 Nov 2019

  23. Zaefferer, M., Fischbach, A., Naujoks, B., Bartz-Beielstein, T.: Simulation-based test functions for optimization algorithms. In: Genetic and Evolutionary Computation Conference (GECCO 2017), pp. 905–912. ACM, Berlin, July 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zaefferer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaefferer, M., Rehbach, F. (2020). Continuous Optimization Benchmarks by Simulation. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58112-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58111-4

  • Online ISBN: 978-3-030-58112-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics