Skip to main content

Gamma Strength Functions and the Brink-Axel Hypothesis

  • Conference paper
  • First Online:
Compound-Nuclear Reactions

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 254))

  • 498 Accesses

Abstract

Experimental tests of the Brink-Axel hypothesis relating gamma strength functions (GSF) deduced from absorption and emission experiments are discussed. High-resolution inelastic proton scattering at energies of a few hundred MeV and at very forward angles including 0 presents a new approach to test the validity of the BA hypothesis in the energy region of the pygmy dipole resonance. Such data not only provide the GSF but also the level density (LD) and thus permit an independent test of their model-dependent decomposition in the Oslo method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007)

    Article  ADS  Google Scholar 

  2. M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  3. M. Salvatore, G. Palmiotti, Prog. Part. Nucl. Phys. 66, 144 (2011)

    Article  ADS  Google Scholar 

  4. M. Wiescher, F. Käppeler, K. Langanke, Annu. Rev. Astron. Astrophys. 50, 165 (2012)

    Article  ADS  Google Scholar 

  5. D.M. Brink, Ph.D. Thesis, Oxford University (1955)

    Google Scholar 

  6. P. Axel, Phys. Rev. 126, 671 (1962)

    Article  ADS  Google Scholar 

  7. P.F. Bortignon, A.Bracco, R.A. Broglia, Giant Resonances: Nuclear Structure at Finite Temperature (Harwood Academic, Amsterdam, 1998)

    Google Scholar 

  8. C.W. Johnson, Phys. Lett. B 750, 72 (2015)

    Article  ADS  Google Scholar 

  9. N. Quang Hung, N. Dinh Dang, L.T. Quynh Huong, Phys. Rev. Lett. 118, 022502 (2017)

    Article  ADS  Google Scholar 

  10. A. Schiller et al., Nucl. Instrum. Methods A 447, 498 (2000)

    Article  ADS  Google Scholar 

  11. M. Guttormsen et al., Phys. Rev. Lett. 116, 012502 (2016)

    Article  ADS  Google Scholar 

  12. A.C. Larsen et al., J. Phys. G 44, 064005 (2017)

    Article  ADS  Google Scholar 

  13. D. Bohle et al., Phys. Lett. B 137, 27 (1984)

    Article  ADS  Google Scholar 

  14. K. Heyde, P. von Neumann-Cosel, A. Richter, Rev. Mod. Phys. 82, 2365 (2010)

    Article  ADS  Google Scholar 

  15. M. Guttormsen et al., Phys. Rev. Lett. 109, 162503 (2012)

    Article  ADS  Google Scholar 

  16. C.T. Angell et al., Phys. Rev. Lett. 117, 142501 (2016)

    Article  ADS  Google Scholar 

  17. A. Voinov et al., Phys. Rev. Lett. 93, 142504 (2004)

    Article  ADS  Google Scholar 

  18. G. Rusev et al., Phys. Rev. C 79, 061302 (2009)

    Article  ADS  Google Scholar 

  19. C. Romig et al., Phys. Lett. B 744, 369 (2015)

    Article  ADS  Google Scholar 

  20. B. Löher et al., Phys. Lett. B 756, 72 (2016)

    Article  ADS  Google Scholar 

  21. J. Isaak et al., Phys. Lett. B 788, 225 (2019)

    Article  ADS  Google Scholar 

  22. C.T. Angell et al., Phys. Rev. C 86, 051302(R) (2012)

    Google Scholar 

  23. Erratum to Ref. [22], Phys. Rev. C 91, 039901(E) (2015)

  24. A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011)

    Article  ADS  Google Scholar 

  25. I. Poltoratska et al., Phys. Rev. C 85, 041304(R) (2012)

    Google Scholar 

  26. A.M. Krumbholz et al., Phys. Lett. B 744, 7 (2015)

    Article  ADS  Google Scholar 

  27. T. Hashimoto et al., Phys. Rev. C 92, 031305(R) (2015)

    Google Scholar 

  28. J. Birkhan et al., Phys. Rev. Lett. 118, 252501 (2017)

    Article  ADS  Google Scholar 

  29. D. Martin et al., Phys. Rev. Lett. 119, 182503 (2017)

    Article  ADS  Google Scholar 

  30. J. Birkhan et al., Phys. Rev. C 93, 041302(R) (2016)

    Google Scholar 

  31. I. Poltoratska et al., Phys. Rev. C 89, 054322 (2014)

    Article  ADS  Google Scholar 

  32. S. Bassauer, P. von Neumann-Cosel, A. Tamii, Phys. Rev. C 94, 054313 (2016)

    Article  ADS  Google Scholar 

  33. A. Tamii et al., Nucl. Instrum. Method. A 605, 3 (2009)

    Article  Google Scholar 

  34. C.A. Bertulani, G. Baur, Phys. Rep. 163, 299 (1988)

    Article  ADS  Google Scholar 

  35. N. Ryezayeva et al., Phys. Rev. Lett. 89, 272502 (2002)

    Article  Google Scholar 

  36. R. Schwengner et al., Phys. Rev. C 81, 054315 (2010)

    Article  ADS  Google Scholar 

  37. R. Köhler et al., Phys. Rev. C 35, 1646 (1987)

    Article  ADS  Google Scholar 

  38. A. Veyssiere et al., Nucl. Phys. A159, 561 (1970)

    Article  ADS  Google Scholar 

  39. K.P. Schelhaas et al., Nucl. Phys. A489, 189 (1988)

    Article  ADS  Google Scholar 

  40. M. Ichimura, H. Sakai, T. Wakasa, Prog. Part. Nucl. Phys. 56, 446 (2006)

    Article  ADS  Google Scholar 

  41. M. Mathy et al., Phys. Rev. C 95, 054316 (2017)

    Article  ADS  Google Scholar 

  42. N.U.H. Syed et al., Phys. Rev. C 79, 024316 (2009)

    Article  ADS  Google Scholar 

  43. Y. Kalmykov et al., Phys. Rev. Lett. 96, 012502 (2006)

    Article  ADS  Google Scholar 

  44. Y. Kalmykov et al., Phys. Rev. Lett. 99, 202502 (2007)

    Article  ADS  Google Scholar 

  45. I. Usman et al., Phys. Rev. C 84, 054322 (2011)

    Article  ADS  Google Scholar 

  46. B. Jonson et al., CERN report 76–13, 277 (1976)

    Google Scholar 

  47. R. Capote et al., Nucl. Data Sheets 110, 3107 (2009)

    Article  ADS  Google Scholar 

  48. M. Guttormsen et al., Phys. Rev. C 71, 044307 (2005)

    Article  ADS  Google Scholar 

  49. A.C. Larsen, S. Goriely, Phys. Rev. C 82, 014318 (2010)

    Article  ADS  Google Scholar 

  50. U. Agvaanluvsan et al., Phys. Rev. C 79, 014320 (2009)

    Article  ADS  Google Scholar 

  51. H.K. Toft et al., Phys. Rev. C 83, 044320 (2011)

    Article  ADS  Google Scholar 

  52. D. Savran, T. Aumann, A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013)

    Article  ADS  Google Scholar 

  53. S. Bassauer et al., Phys. Lett. B 810, 135804 (2020); Phys. Rev. C 102, 034327 (2020)

    Article  Google Scholar 

  54. J. Endres et al., Phys. Rev. Lett. 105, 212503 (2010)

    Article  ADS  Google Scholar 

  55. L. Pellegri et al., Phys. Lett. B 738, 519 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank S. Bassauer for his contribution to the analysis of the present results and A. Tamii and the collaborators at RCNP for the excellent experiments. This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project number 279384907–SFB 1245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter von Neumann-Cosel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neumann-Cosel, P.v. (2021). Gamma Strength Functions and the Brink-Axel Hypothesis. In: Escher, J., et al. Compound-Nuclear Reactions . Springer Proceedings in Physics, vol 254. Springer, Cham. https://doi.org/10.1007/978-3-030-58082-7_18

Download citation

Publish with us

Policies and ethics