Skip to main content

Aim in Climate Change and City Pollution

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine
  • 65 Accesses

Abstract

The sustainability of urban environments is an increasingly relevant problem. Air pollution plays a key role in the degradation of the environment as well as the health of the citizens exposed to it. In this chapter we provide a review of the methods available to model air pollution, focusing on the application of machine-learning methods. In fact, machine-learning methods have proved to importantly increase the accuracy of traditional air-pollution approaches while limiting the development cost of the models. Machine-learning tools have opened new approaches to study air pollution, such as flow-dynamics modeling or remote-sensing methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Brewer TL. Black carbon emissions and regulatory policies in transportation. Energy Policy. 2019;129:1047–55. https://doi.org/10.1016/j.enpol.2019.02.073.

    Article  Google Scholar 

  2. Budde M, et al. SmartAQnet: remote and in-situ sensing of urban air quality. In: Proceedings of SPIE 10424, Remote Sensing of Clouds and the Atmosphere XXII, 104240C, vol. 1, no. 1. 2017. https://doi.org/10.1117/12.228269.

  3. Doreswamy HKS, Ibrahim Gad Yogesh KM. Forecasting air pollution particulate matter using machine learning regression models. Procedia Comput Sci. 2020;171:2057–66. https://doi.org/10.1016/j.procs.2020.04.221.

    Article  Google Scholar 

  4. European Commission. Urbanisation worldwide. https://ec.europa.eu/knowledge4policy/foresight/topic/continuing-urbanisation/urbanisation-worldwide_en

  5. Fujisada H, et al. ASTER DEM performance. IEEE Trans Geosci Remote Sens. 2005;43(12):2707–14. https://doi.org/10.1109/TGRS.2005.847924.

    Article  Google Scholar 

  6. Giri S, et al. Evaluating the impact of land uses on stream integrity using machine learning algorithms. Sci Total Environ. 2019;696(15):133858. https://doi.org/10.1016/j.scitotenv.2019.133858.

    Article  CAS  PubMed  Google Scholar 

  7. Guastoni L, et al. Convolutional-network models to predict wall-bounded turbulence from wall quantities. J. Fluid Mech., To Appear 2021. arXiv preprint arXiv:2006.12483. 2020a.

    Google Scholar 

  8. Guastoni L, et al. Prediction of wall-bounded turbulence from wall quantities using convolutional neural networks. J Phys: Conf Ser. 2020b;1522:012022.

    Google Scholar 

  9. Ho HC, et al. A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area. Sci Total Environ. 2016;544(1):929–38. https://doi.org/10.1016/j.scitotenv.2015.12.021.

    Article  CAS  PubMed  Google Scholar 

  10. Huang Y, et al. Impact of wedge-shaped roofs on airflow and pollutant dispersion inside urban street canyons. Build Environ. 2009;44(12):2335–47. https://doi.org/10.1016/j.buildenv.2009.03.024.

    Article  Google Scholar 

  11. Lelieveld J, et al. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J. 2019;40:1590–6.

    Article  CAS  Google Scholar 

  12. Sirmacek B, et al. Performance evaluation for 3-D city model generation of six different DSMs from air- and spaceborne sensors. IEEE J Select Topics Appl Earth Observ Remote Sens. 2012;5(1):59–70. https://doi.org/10.1109/JSTARS.2011.2178399.

    Article  Google Scholar 

  13. Srinivasan PA, et al. Predictions of turbulent shear flows using deep neural networks. Phys Rev Fluids. 2019;4:054603.

    Article  Google Scholar 

  14. Suleiman A, et al. Hybrid neural networks and boosted regression tree models for predicting roadside particulate matter. Environ Model Assess. 2016;21:731–50. https://doi.org/10.1007/s10666-016-9507-5.

    Article  Google Scholar 

  15. Taubenboeck H, et al. Integrating remote sensing and social science. Joint Urban Remote Sens Event. 2009;1(1):1–7. https://doi.org/10.1109/URS.2009.5137506.

    Article  Google Scholar 

  16. Téllez-Rojo MM, et al. Children’s acute respiratory symptoms associated with PM2.5 estimates in two sequential representative surveys from the Mexico City Metropolitan Area. Environ Res. 2020;180(1):108868. https://doi.org/10.1016/j.envres.2019.108868.

    Article  CAS  PubMed  Google Scholar 

  17. Torres P, et al. The structure of urban flows. Energies. 2020;1–35. https://doi.org/10.20944/preprints202009.0556.v1.

  18. Vinuesa R, et al. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat Commun. 2020;11:233.

    Article  CAS  Google Scholar 

  19. Wang Z, et al. Acute health impacts of airborne particles estimated from satellite remote sensing. Environ Int. 2013;51(1):150–9. https://doi.org/10.1016/j.envint.2012.10.011.

    Article  PubMed  Google Scholar 

  20. Wang A, et al. Potential of machine learning for prediction of traffic related air pollution. Transp Res Part D: Transp Environ. 2020;88:102599. https://doi.org/10.1016/j.trd.2020.102599.

    Article  Google Scholar 

  21. World Health Organization. Review of evidence on health aspects of air pollution. REVIHAAP Project, vol. 309. 2013. http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-final-technical-report

  22. Xiao D, et al. A reduced order model for turbulent flows in the urban environment using machine learning. Build Environ. 2019;148:323–37. https://doi.org/10.1016/j.buildenv.2018.10.035.

    Article  Google Scholar 

  23. Zheng Y, et al. U-air: when urban air quality inference meets big data. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD‘13). Association for Computing Machinery, New York, vol. 1, no. 1. 2013. p. 1436–44. https://doi.org/10.1145/2487575.2488188.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Vinuesa .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

(MOV 214259 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Torres, P., Sirmacek, B., Hoyas, S., Vinuesa, R. (2021). Aim in Climate Change and City Pollution. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_290-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_290-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics