Skip to main content

Artificial Intelligence for Medical Diagnosis

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Medical diagnosis has been one of the primary targets of Artificial Intelligence research since the inception of the field. In recent years, rapid advances in Artificial Intelligence have seen the emergence of diagnostic algorithms that perform as well as clinicians and can be applied at scale in clinical practice. This chapter presents a broad picture of the foundations, history, and the current state of AI in medical diagnosis. We provide an overview of the complex and interdependent tasks required to perform diagnosis and explore how ideas from the study of diagnostic reasoning and diagnostic errors can guide the effective development and deployment of Artificial Intelligence solutions. We then review the three main approaches to diagnostic AI; rules-based, model-based, and machine learning, detailing their strengths and weaknesses, and how each of these approaches tackles diagnosis from a different angle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Newman-Toker DE, Pronovost PJ. Diagnostic errorsthe next frontier for patient safety. JAMA. 2009;301(10):1060–2.

    Article  CAS  PubMed  Google Scholar 

  2. Graber ML. The incidence of diagnostic error in medicine. BMJ Qual Saf. 2013;22(Suppl 2):ii21–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singh H, Schiff GD, Graber ML, Onakpoya I, Thompson MJ. The global burden of diagnostic errors in primary care. BMJ Qual Saf. 2017;26(6):484–94.

    Article  PubMed  Google Scholar 

  4. Newman-Toker DE, McDonald KM, Meltzer DO. How much diagnostic safety can we afford, and how should we decide? A health economics perspective. BMJ Qual Saf. 2013;22(Suppl 2):ii11–20.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Diagnostic Errors: Technical Series on Safer Primary Care. Geneva: World Health Organization; 2016. Licence: CC BY-NC-SA 3.0 IGO.

    Google Scholar 

  6. Sadegh-Zadeh K. Fuzzy logic. In: Handbook of analytic philosophy of medicine. Netherlands: Springer; 2015. p. 1055–110.

    Google Scholar 

  7. Sampath M, Lafortune S, Teneketzis D. Active diagnosis of discrete-event systems. IEEE Trans Autom Control. 1998;43(7):908–29.

    Article  Google Scholar 

  8. Peirce CS. Philosophical writings of Peirce (J. Buchler, ed). Vol 217. New York: Dover. 1955.

    Google Scholar 

  9. Ramoni M, Stefanelli M, Magnani L, Barosi G. An epistemological framework for medical knowledge-based systems. IEEE Trans Syst Man Cybern. 1992;22(6):1361–75.

    Article  Google Scholar 

  10. Patel VL, Arocha JF, Jiajie Z. Thinking and reasoning in medicine. In: The Oxford handbook of thinking and reasoning. Oxford University Press, 2012. p. 1–34.

    Google Scholar 

  11. Simmons B. Clinical reasoning: concept analysis. J Adv Nurs. 2010;66(5):1151–8.

    Article  PubMed  Google Scholar 

  12. Pelaccia T, Tardif J, Triby E, Charlin B. An analysis of clinical reasoning through a recent and comprehensive approach: the dual-process theory. Med Educ Online. 2011;16(1):5890.

    Article  Google Scholar 

  13. Evans JSBT, Stanovich KE. Dual-process theories of higher cognition: advancing the debate. Perspect Psychol Sci. 2013;8(3):223–41.

    Article  PubMed  Google Scholar 

  14. Ledley RS, Lusted LB. Reasoning foundations of medical diagnosis. Science. 1959;130(3366):9–21.

    Article  CAS  PubMed  Google Scholar 

  15. Sloman SA. The empirical case for two systems of reasoning. Psychol Bull. 1996;119(1):3.

    Article  Google Scholar 

  16. Mao Q, Jay M, Hoffman JL, Calvert J, Barton C, Shimabukuro D, Shieh L, Chettipally U, Fletcher G, Kerem Y, et al. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ Open. 2018;8(1):e017833,2018.

    Google Scholar 

  17. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Kalloo A, Hassen ABH, Thomas L, Enk A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42.

    Article  CAS  PubMed  Google Scholar 

  18. Shwe MA, Middleton B, Heckerman DE, Henrion M, Horvitz EJ, Lehmann HP, Cooper GF. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. Methods Inf Med. 1991;30(4):241–55.

    Article  CAS  PubMed  Google Scholar 

  19. Bakator M, Radosav D. Deep learning and medical diagnosis: a review of literature. Multimod Technol Interact. 2018;2(3):47.

    Article  Google Scholar 

  20. Holzinger A, Langs G, Denk H, Zatloukal K, Müüller H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Disc. 2019;9(4):e1312.

    Google Scholar 

  21. Marcus G. Deep learning: a critical appraisal. arXiv preprint arXiv:1801.00631. 2018.

    Google Scholar 

  22. Geirhos R, Jacobsen J-H, Michaelis C, Zemel R, Brendel W, Bethge M, Wichmann FA. Shortcut learning in deep neural networks. Nat Mach Intell. 2020;2(11):665–73.

    Article  Google Scholar 

  23. Badgeley MA, Zech JR, Oakden-Rayner L, Glicksberg BS, Liu M, Gale W, McConnell MV, Percha B, Snyder TM, Dudley JT. Deep learning predicts hip fracture using confounding patient and healthcare variables. NPJ Digit Med. 2019;2(1):1–10.

    Article  Google Scholar 

  24. DeGrave AJ, Janizek JD, Lee S-I. AI for radiographic COVID-19 detection selects shortcuts over signal. medRxiv. 2020.

    Google Scholar 

  25. Berner ES. Clinical decision support systems, vol. 233. New York, NY, USA: Springer; 2007.

    Google Scholar 

  26. Castaneda C, Nalley K, Mannion C, Bhattacharyya P, Blake P, Pecora A, Goy A, Suh KS. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J Clin Bioinform. 2015;5(1):1–16.

    Article  Google Scholar 

  27. Garg AX, Adhikari NKJ, McDonald H, Rosas-Arellano MP, Devereaux PJ, Beyene J, Sam J, Haynes RB. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA. 2005;293(10):1223–38.

    Article  CAS  PubMed  Google Scholar 

  28. Croskerry P. The importance of cognitive errors in diagnosis and strategies to minimize them. Acad Med. 2003;78(8):775–80.

    Article  PubMed  Google Scholar 

  29. Bruno MA, Walker EA, Abujudeh HH. Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction. Radiographics. 2015;35(6):1668–76.

    Article  PubMed  Google Scholar 

  30. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Busby LP, Courtier JL, Glastonbury CM. Bias in radiology: the how and why of misses and misinterpretations. Radiographics. 2018;38(1):236–47.

    Article  PubMed  Google Scholar 

  32. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, Back T, Chesus M, Corrado GS, Darzi A, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94.

    Article  CAS  PubMed  Google Scholar 

  33. Graber ML, Franklin N, Gordon R. Diagnostic error in internal medicine. Arch Intern Med. 2005;165(13):1493–9.

    Article  PubMed  Google Scholar 

  34. Crowley RS, Legowski E, Medvedeva O, Reitmeyer K, Tseytlin E, Castine M, Jukic D, Mello-Thoms C. Automated detection of heuristics and biases among pathologists in a computer-based system. Adv Health Sci Educ. 2013;18(3):343–63.

    Article  Google Scholar 

  35. Rotmensch M, Halpern Y, Tlimat A, Horng S, Sontag D. Learning a health knowledge graph from electronic medical records. Sci Rep. 2017;7(1):1–11.

    Article  CAS  Google Scholar 

  36. Shortliffe EH. Mycin: a knowledge-based computer program applied to infectious diseases. In: Proceedings of the Annual Symposium on Computer Application in Medical Care. American Medical Informatics Association; 1977. p. 66.

    Google Scholar 

  37. Aikins JS, Kunz JC, Shortliffe EH, Fallat RJ. Puff: an expert system for interpretation of pulmonary function data. Comput Biomed Res. 1983;16(3):199–208.

    Article  CAS  PubMed  Google Scholar 

  38. Kingsland LC, Lindberg DAB, Sharp GC. AI/RHEUM. J Med Syst. 1983;7(3):221–7.

    Article  PubMed  Google Scholar 

  39. Adlassnig K-P, Kolarz G, Scheithauer W, Effenberger H, Grabner G. CADIAG: approaches to computer-assisted medical diagnosis. Comput Biol Med. 1985;15(5):315–35.

    Article  Google Scholar 

  40. Zadeh LA. Information and control. Fuzzy Sets. 1965;8(3):338–53.

    Google Scholar 

  41. Fieschi M, Joubert M, Fieschi D, Roux M. SPHINX – a system for computer-aided diagnosis. Methods Inf Med. 1982;21(03):143–8.

    Article  CAS  PubMed  Google Scholar 

  42. Godo LL, de Mántaras RL, Sierra C, Verdaguer A. Managing linguistically expressed uncertainty in milord application to medical diagnosis. AI Commun. 1988;1(1):14–31.

    Article  Google Scholar 

  43. Lekkas S, Mikhailov L. Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases. Artif Intell Med. 2010;50(2):117–26.

    Article  PubMed  Google Scholar 

  44. Kour H, Manhas J, Sharma V. Usage and implementation of neuro-fuzzy systems for classification and prediction in the diagnosis of different types of medical disorders: a decade review. Artif Intell Rev. 2020;53(7):4651–706.

    Article  Google Scholar 

  45. Myers JD, Pople HE, Miller RA. Caduceus: a computerized diagnostic consultation system in internal medicine. In: Proceedings of the Annual Symposium on Computer Application in Medical Care. American Medical Informatics Association; 1982. p. 44.

    Google Scholar 

  46. Köhler S, Schulz MH, Krawitz P, Bauer S, Dölken S, Ott CE, Mundlos C, Horn D, Mundlos S, Robinson PN. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet. 2009;85(4):457–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gounot VB, Donfack V, Lasbleiz J, Bourde A, Duvauferrier R. Creating an ontology driven rules base for an expert system for medical diagnosis. Stud Health Technol Inform. 2011;169:714–8.

    Google Scholar 

  48. Kazemi SM, Poole D. Simple embedding for link prediction in knowledge graphs. arXiv preprint arXiv:1802.04868. 2018.

    Google Scholar 

  49. Lukovnikov D, Fischer A, Lehmann J, Auer S. Neural network-based question answering over knowledge graphs on word and character level. In: Proceedings of the 26th International Conference on World Wide Web. 2017. p. 1211–20.

    Google Scholar 

  50. Algergawy A, Cheatham M, Faria D, Ferrara A, Fundulaki I, Harrow I, Hertling S, Jiménez-Ruiz E, Karam N, Khiat A, et al. Results of the ontology alignment evaluation initiative 2018. In: 13th International Workshop on Ontology Matching co-located with the 17th ISWC (OM 2018), vol. 2288. 2018. p. 76–116.

    Google Scholar 

  51. World Health Organization. International statistical classification of diseases and related health problems: tabular list, vol. 1. Geneva, Switzerland: World Health Organization; 2004.

    Google Scholar 

  52. SNOMED International. SNOMED-CT.

    Google Scholar 

  53. Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004;32(suppl 1):D267–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee D, de Keizer N, Lau F, Cornet R. Literature review of SNOMED CT use. J Am Med Inform Assoc. 2014;21(e1):e11–9.

    Article  PubMed  Google Scholar 

  55. Weiss SM, Kulikowski CA, Safir A. A model-based consultation system for the long-term management of glaucoma. In: IJCAI, vol. 5. 1977. p. 826–32.

    Google Scholar 

  56. Lauritzen SL, Spiegelhalter DJ. Local computations with probabilities on graphical structures and their application to expert systems. J R Stat Soc Ser B Methodol. 1988;50(2):157–94.

    Google Scholar 

  57. Miller RA, McNeil MA, Challinor SM, Masarie FE Jr, Myers JD. The INTERNIST-1/Quick Medical Reference project status report. West J Med. 1986;145(6):816.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. INSERM. Orphanet.

    Google Scholar 

  59. Köhler S, Doelken SC, Mungall CJ, Bauer S, Firth HV, Bailleul-Forestier I, Black GCM, Brown DL, Brudno M, Campbell J, et al. The human phenotype ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 2014;42(D1):D966–74.

    Article  PubMed  CAS  Google Scholar 

  60. Pinchin V. I’m feeling yucky :( searching for symptoms on google. The Keyword, 2016.

    Google Scholar 

  61. Turki H, Shafee T, Taieb MAH, Aouicha MB, Vrandečić D, Das D, Hamdi H. Wikidata: a largescale collaborative ontological medical database. J Biomed Inform. 2019;99:103292.

    Article  PubMed  Google Scholar 

  62. Abbasi J. Shantanu Nundy, MD: the human diagnosis project. JAMA. 2018;319(4):329–31.

    Article  PubMed  Google Scholar 

  63. De Dombal FT, Leaper DJ, Horrocks JC, Staniland JR, Mc-Cann AP. Human and computer-aided diagnosis of abdominal pain: further report with emphasis on performance of clinicians. Br Med J. 1974;1(5904):376–80.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lucas PJF. Symbolic diagnosis and its formalisation. Knowl Eng Rev. 1997;12(2):109–46.

    Article  Google Scholar 

  65. Partridge D. The scope and limitations of first generation expert systems. Futur Gener Comput Syst. 1987;3(1):1–10.

    Article  Google Scholar 

  66. Van De Riet RP. Problems with expert systems? Futur Gener Comput Syst. 1987;3(1):11–6.

    Article  Google Scholar 

  67. Davis R. Expert systems: where are we? And where do we go from here? AI Mag. 1982;3(2):3–3.

    Google Scholar 

  68. Mozetič I. Model-based diagnosis: an overview. In: Mřrík V, Štĕpánková O, Trappl R, editors. Advanced topics in artificial intelligence. Berlin/Heidelberg: Springer; 1992. p. 419–30.

    Chapter  Google Scholar 

  69. Bylander T. Some causal models are deeper than others. Artif Intell Med. 1990;2(3):123–8.

    Article  Google Scholar 

  70. Reiter R. A theory of diagnosis from first principles. Artif Intell. 1987;32(1):57–95.

    Article  Google Scholar 

  71. Poole D. Normality and faults in logic-based diagnosis. In: IJCAI, vol. 89. Citeseer; 1989. p. 1304–10.

    Google Scholar 

  72. Eiter T, Gottlob G. The complexity of logic-based abduction. J ACM. 1995;42(1):3–42.

    Article  Google Scholar 

  73. Cox PT, Pietrzykowski T. General diagnosis by abductive inference. In: SLP, vol. 183. 1987. p. 189.

    Google Scholar 

  74. Poole D, Goebel R, Aleliunas R. Theorist: a logical reasoning system for defaults and diagnosis. In: The knowledge frontier. Springer-Verlag, Berlin; 1987. p. 331–52.

    Google Scholar 

  75. Weiss SM, Kulikowski CA, Amarel S, Safir A. A model-based method for computer-aided medical decision-making. Artif Intell. 1978;11(1–2):145–72.

    Article  Google Scholar 

  76. Finin T, Morris G. Abductive reasoning in multiple fault diagnosis. Artif Intell Rev. 1989;3(2):129–58.

    Google Scholar 

  77. Reggia JA, Nau DS, Wang PY. A formal model of diagnostic inference. I. Problem formulation and decomposition. Inf Sci. 1985;37(13):227–56.

    Article  Google Scholar 

  78. Mani N, Slevin N, Hudson A. What three wise men have to say about diagnosis. BMJ. 2011;343:d7769

    Google Scholar 

  79. Pearl J. Causality (2nd ed.). Cambridge: Cambridge University Press; 2009.

    Google Scholar 

  80. Gorry GA, Barnett GO. Experience with a model of sequential diagnosis. Comput Biomed Res. 1968;1(5):490–507.

    Article  CAS  PubMed  Google Scholar 

  81. Musen MA, Middleton B, Greenes RA. Clinical decision support systems. In: Biomedical informatics. Springer, New York; 2014. p. 643–74.

    Google Scholar 

  82. Pradhan M, Provan G, Middleton B, Henrion M. Knowledge engineering for large belief networks. In: Uncertainty Proceedings 1994. Elsevier; 1994. p. 484–90.

    Chapter  Google Scholar 

  83. Wellman MP, Henrion M. Explaining ‘explaining away’. IEEE Trans Pattern Anal Mach Intell. 1993;15(3):287–92.

    Article  Google Scholar 

  84. Pourret O, Naïm P, Marcot B. Bayesian networks: a practical guide to applications. Wiley, West Sussex, England; 2008.

    Google Scholar 

  85. Yokota F, Thompson KM. Value of information literature analysis: a review of applications in health risk management. Med Decis Mak. 2004;24(3):287–98.

    Article  Google Scholar 

  86. Buchard A, Baker A, Gourgoulias K, Navarro A, Perov Y, Zwiessele M, Johri S. Tuning semantic consistency of active medical diagnosis: a walk on the semantic simplex. In: Frontier of AI-Assisted Care (FAC) Scientific Symposium. 2019.

    Google Scholar 

  87. Shachter RD. Evaluating influence diagrams. Oper Res. 1986;34(6):871–82.

    Article  Google Scholar 

  88. Richens JG, Lee CM, Johri S. Improving the accuracy of medical diagnosis with causal machine learning. Nat Commun. 2020;11(1):1–9.

    CAS  Google Scholar 

  89. Halpern JY. Actual causality. Cambridge, MA: MIT Press; 2016.

    Google Scholar 

  90. Pearl J. Probabilities of causation: three counterfactual interpretations and their identification. Synthese. 1999;121(1):93–149.

    Article  Google Scholar 

  91. Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, Ferrero E, Agapow P-M, Zietz M, Hoffman MM, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface. 2018;15(141):20170387.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Abbasi NR, Shaw HM, Rigel DS, Friedman RJ, McCarthy WH, Osman I, Kopf AW, Polsky D. Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria. JAMA. 2004;292(22):2771–6.

    Article  CAS  PubMed  Google Scholar 

  93. Goyal M, Knackstedt T, Yan S, Hassanpour S. Artificial intelligence-based image classification for diagnosis of skin cancer: challenges and opportunities. Comput Biol Med. 2020;127:104065.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics. Springer-Verlag, Berlin; 1980;36:193–202.

    Google Scholar 

  95. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1(4):541–51.

    Article  Google Scholar 

  96. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Advances in neural information processing systems; 2017. p. 5998–6008. Cambridge, MA: MIT Press

    Google Scholar 

  97. Touvron H, Cord M, Douze M, Massa F, Sablayrolles A, Jégou H. Training data-efficient image transformers & distillation through attention. arXiv preprint arXiv:2012.12877. 2020.

    Google Scholar 

  98. Goldbloom A. What algorithms are most successful on Kaggle? 2016. Available at: https://www.kaggle.com/antgoldbloom/what-algorithmsare-most-successful-on-kaggle. (Accessed: 9th August 2021).

  99. Pavlopoulos SA, Stasis ACH, Loukis EN. A decision tree–based method for the differential diagnosis of aortic stenosis from mitral regurgitation using heart sounds. Biomed Eng Online. 2004;3(1):1–15.

    Article  Google Scholar 

  100. Zorman M, Eich H-P, Kokol P, Ohmann C. Comparison of three databases with a decision tree approach in the medical field of acute appendicitis. Stud Health Technol Inform. 2001;84(Pt 2):1414–8.

    CAS  PubMed  Google Scholar 

  101. Habibi S, Ahmadi M, Alizadeh S. Type 2 diabetes mellitus screening and risk factors using decision tree: results of data mining. Global J Health Sci. 2015;7(5):304.

    Article  Google Scholar 

  102. Lee H-C, Yoon H-K, Nam K, Cho YJ, Kim TK, Kim WH, Bahk J-H. Derivation and validation of machine learning approaches to predict acute kidney injury after cardiac surgery. J Clin Med. 2018;7(10):322.

    Article  PubMed Central  Google Scholar 

  103. Stone MH. The generalized weierstrass approximation theorem. Math Mag. 1948;21(5):237–54.

    Article  Google Scholar 

  104. Hammer B, Gersmann K. A note on the universal approximation capability of support vector machines. Neural Process Lett. 2003;17(1):43–53.

    Article  Google Scholar 

  105. Cybenko G. Approximation by superpositions of a sigmoidal function. Math Control Signals Syst. 1989;2(4):303–14.

    Article  Google Scholar 

  106. Raghu M, Poole B, Kleinberg J, Ganguli S, Sohl-Dickstein J. On the expressive power of deep neural networks. In: International Conference on Machine Learning. PMLR; 2017. p. 2847–54.

    Google Scholar 

  107. Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. 1992. p. 144–52.

    Google Scholar 

  108. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Stoean R, Stoean C, Preuss M, El-Darzi E, Dumitrescu D. Evolutionary support vector machines for diabetes mellitus diagnosis. In: 2006 3rd International IEEE Conference Intelligent Systems. IEEE; 2006. p. 182–7.

    Chapter  Google Scholar 

  110. Barakat N, Bradley AP, Barakat MNH. Intelligible support vector machines for diagnosis of diabetes mellitus. IEEE Trans Inf Technol Biomed. 2010;14(4):1114–20.

    Article  PubMed  Google Scholar 

  111. Bennett KP, Blue JA. A support vector machine approach to decision trees. In: 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98CH36227), vol. 3. IEEE; 1998. p. 2396–401.

    Chapter  Google Scholar 

  112. Polat K, Güneş S. Breast cancer diagnosis using least square support vector machine. Digital Signal Process. 2007;17(4):694–701.

    Article  Google Scholar 

  113. Sharma S, Khanna P. Computer-aided diagnosis of malignant mammograms using Zernike moments and SVM. J Digit Imaging. 2015;28(1):77–90.

    Article  PubMed  Google Scholar 

  114. Srinivasan PP, Kim LA, Mettu PS, Cousins SW, Comer GM, Izatt JA, Farsiu S. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed Opt Express. 2014;5(10):3568–77.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Li H, Lim JH, Liu J, Mitchell P, Tan AG, Wang JJ, Wong TY. A computer-aided diagnosis system of nuclear cataract. IEEE Trans Biomed Eng. 2010;57(7):1690–8.

    Article  PubMed  Google Scholar 

  116. Ergin S, Kilinc O. A new feature extraction framework based on wavelets for breast cancer diagnosis. Comput Biol Med. 2014;51:171–82.

    Article  PubMed  Google Scholar 

  117. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323(6088):533–6.

    Article  Google Scholar 

  118. Poudel RPK, Lamata P, Montana G. Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Reconstruction, segmentation, and analysis of medical images. 1st International Workshops on Reconstruction and Analysis of Moving Body Organs, RAMBO 2016 and 1st International Workshops on Whole-Heart and Great Vessel Segmentation from 3D Cardiovascular MRI in Congenital Heart Disease, HVSMR 2016 (2016). p. 83–94. Springer International; 2016. p. 83–94

    Google Scholar 

  119. Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172(5):1122–31.

    Article  CAS  PubMed  Google Scholar 

  120. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  121. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017;36:61–78.

    Article  PubMed  Google Scholar 

  122. Schlegl T, Waldstein SM, Bogunovic H, Endstraßer F, Sadeghipour A, Philip A-M, Podkowinski D, Gerendas BS, Langs G, Schmidt-Erfurth U. Fully automated detection and quantification of macular UID in OCT using deep learning. Ophthalmology. 2018;125(4):549–58.

    Article  PubMed  Google Scholar 

  123. Wolterink JM, Leiner T, Viergever MA, Išgum I. Automatic coronary calcium scoring in cardiac CT angiography using convolutional neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2015. p. 589–96.

    Google Scholar 

  124. Pham C-H, Ducournau A, Fablet R, Rousseau F. Brain MRI super-resolution using deep 3D convolutional networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). IEEE; 2017. p. 197–200.

    Chapter  Google Scholar 

  125. Boveiri HR, Khayami R, Javidan R, Mehdizadeh A. Medical image registration using deep neural networks: a comprehensive review. Comput Electr Eng. 2020;87:106767.

    Article  Google Scholar 

  126. Raza K, Singh NK. A tour of unsupervised deep learning for medical image analysis. arXiv preprint arXiv:1812.07715. 2018.

    Google Scholar 

  127. Hinton GE, Zemel RS. Autoencoders, minimum description length, and Helmholtz free energy. Adv Neural Inf Proces Syst. 1994;6:3–10.

    Google Scholar 

  128. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, DavidWarde-Farley SO, Courville A, Bengio Y. Generative adversarial nets. In: Advances in neural information processing systems. 2014. p. 2672–80. Cambridge, MA: MIT Press.

    Google Scholar 

  129. Chaitanya K, Erdil E, Karani N, Konukoglu E. Contrastive learning of global and local features for medical image segmentation with limited annotations. arXiv preprint arXiv:2006.10511. 2020.

    Google Scholar 

  130. Singh G, Samavedham L. Unsupervised learning based feature extraction for differential diagnosis of neurodegenerative diseases: a case study on early-stage diagnosis of Parkinson disease. J Neurosci Methods. 2015;256:30–40.

    Article  PubMed  Google Scholar 

  131. Zunair H, Hamza AB. Melanoma detection using adversarial training and deep transfer learning. Phys Med Biol. 2020;65(13):135005.

    Article  PubMed  Google Scholar 

  132. Guo S, Xu K, Zhao R, Gotz D, Zha H, Cao N. EventThread: visual summarization and stage analysis of event sequence data. IEEE Trans Vis Comput Graph. 2017;24(1):56–65.

    Article  PubMed  Google Scholar 

  133. Deepak S, Ameer PM. Retrieval of brain MRI with tumor using contrastive loss based similarity on GoogLeNet encodings. Comput Biol Med. 2020;125:103993.

    Article  CAS  PubMed  Google Scholar 

  134. Armanious K, Jiang C, Fischer M, Küstner T, Hepp T, Nikolaou K, Gatidis S, Yang B. Medgan: medical image translation using GANs. Comput Med Imaging Graph. 2020;79:101684.

    Article  PubMed  Google Scholar 

  135. Tang K-F. Inquire and diagnose: neural symptom checking ensemble using deep reinforcement learning. In: 29th Conference on Neural Information Processing Systems (NIPS 2016); 2016. p. 1–9.

    Google Scholar 

  136. Stensmo M, Sejnowski TJ. Automated medical diagnosis based on decision theory and learning from cases. World congress on neural Net-works. 1996;1227–1231.

    Google Scholar 

  137. Buchard A, Bouvier B, Prando G, Beard R, Livieratos M, Busbridge D, Thompson D, Richens J, Zhang Y, Baker A, et al. Learning medical triage from clinicians using deep q-learning.arXivpreprint arXiv:2003.12828. 2020.

    Google Scholar 

  138. Johnson AEW, Pollard TJ, Shen L, Li-Wei HL, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. Mimic-III, a freely accessible critical care database. Sci Data. 2016;3(1):1–9.

    Article  CAS  Google Scholar 

  139. Yan K, Wang X, Lu L, Summers RM. DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J Med Imaging. 2018;5(3):036501.

    Article  Google Scholar 

  140. Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL. Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci. 2007;19(9):1498–507.

    Article  PubMed  Google Scholar 

  141. Poldrack RA, Barch DM, Mitchell J, Wager T, Wagner AD, Devlin JT, Cumba C, Koyejo O, Milham M. Toward open sharing of task-based fMRI data: the OpenfMRI project. Front Neuroinform. 2013;7:12.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Albertina B, Watson M, Holback C, Jarosz R, Kirk S, Lee Y, Lemmerman J. Radiology Data from The Cancer Genome Atlas Lung Adenocarcinoma [TCGA-LUAD] collection. The Cancer Imaging Archive. 2016. https://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5 Available at: https://wiki.cancerimagingarchive.net/display/Public/TCGA-LUAD (Accessed: 9th August 2021).

  143. Cuadros J, Bresnick G. EyePACS: an adaptable telemedicine system for diabetic retinopathy screening. J Diabetes Sci Technol. 2009;3(3):509–16.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Hoover AD, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging. 2000;19(3):203–10.

    Article  CAS  PubMed  Google Scholar 

  145. Cuggia M, Combes S. The French health data hub and the German medical informatics initiatives: two national projects to promote data sharing in healthcare. Yearb Med Inform. 2019;28(1):195.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, Suchard MA, Park RW, Wong ICK, Rijnbeek PR, et al. Observational health data sciences and informatics (OHDSI): opportunities for observational researchers. Stud Health Technol Inform. 2015;216:574.

    PubMed  PubMed Central  Google Scholar 

  147. Miller RA. Computer-assisted diagnostic decision support: history, challenges, and possible paths forward. Adv Health Sci Educ. 2009;14(1):89–106.

    Article  Google Scholar 

  148. Bright TJ, Wong A, Dhurjati R, Bristow E, Bastian L, Coeytaux RR, Samsa G, Hasselblad V, Williams JW, Musty MD, et al. Effect of clinical decision-support systems: a systematic review. Ann Intern Med. 2012;157(1):29–43.

    Article  PubMed  Google Scholar 

  149. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):1–9.

    Article  CAS  Google Scholar 

  150. Shortliffe EH, Sepúlveda MJ. Clinical decision support in the era of artificial intelligence. JAMA. 2018;320(21):2199–200.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan G. Richens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Richens, J.G., Buchard, A. (2021). Artificial Intelligence for Medical Diagnosis. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics