Skip to main content

AIM, Philosophy and Ethics

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

This chapter explores AI through a philosophical and ethical lens. This includes an examination of how AI impacts on medicine in terms of uses and promises, limitations, and risks, as well as key questions to consider. While AI offers scope for complex and large-scale data processing, with the promise of an increase in efficiency and precision, some central limitations need to be highlighted. The use of AI also brings some pertinent and predictable, as well as unpredictable risks, such as those due to biases. Also considered is what may be lost where AI replaces established processes, not least those relational and interpersonal aspects that are central to healthcare. By covering these and related issues, this chapter offers ways to evaluate, and also balance, key benefits and risks arising from the application of AI to the medical sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Coeckelbergh M. AI ethics. The MIT press essential knowledge series. Cambridge, MA: The MIT Press; 2020.

    Google Scholar 

  2. Mittelstadt B. AI ethics – too principled to fail? SSRN Journal [Internet]. 2019 [cited 2021 Mar 22]. https://www.ssrn.com/abstract=3391293

  3. Shaw JA, Sethi N, Block BL. Five things every clinician should know about AI ethics in intensive care. Intensive Care Med. 2021;47(2):157–9.

    Article  PubMed  Google Scholar 

  4. Schiff D, Borenstein J. How should clinicians communicate with patients about the roles of artificially intelligent team members? AMA J Ethics. 2019;21(2):E138–45.

    Article  PubMed  Google Scholar 

  5. Morley J, Machado CCV, Burr C, Cowls J, Joshi I, Taddeo M, et al. The ethics of AI in health care: a mapping review. Soc Sci Med. 2020;260:113172.

    Article  PubMed  Google Scholar 

  6. Kulkarni S, Seneviratne N, Baig MS, Khan AHA. Artificial intelligence in medicine: where are we now? Acad Radiol. 2020;27(1):62–70.

    Article  PubMed  Google Scholar 

  7. Campolo A, Crawford K. Enchanted determinism: power without responsibility in artificial intelligence. Engag Sci Technol Soc. 2020;6:1–19.

    Google Scholar 

  8. Anderson C. The end of theory: the data deluge makes the scientific method obsolete. Wired. 2008;16(07).

    Google Scholar 

  9. Good IJ. The philosophy of exploratory data analysis. Philos Sci. 1983;50(2):283–95.

    Article  Google Scholar 

  10. Dinov ID. Volume and value of big healthcare data. J Med Stat Inf. 2016;4(1):3.

    Article  Google Scholar 

  11. Butte AJ, Kohane IS. Unsupervised knowledge discovery in medical databases using relevance networks. In: Proc AMIA Symp. 1999;711–5.

    Google Scholar 

  12. van Dijck J. Datafication, dataism and dataveillance: big data between scientific paradigm and ideology. Surveill Soc. 2014;12(2):197–208.

    Article  Google Scholar 

  13. danah b, Crawford K. Critical questions for big data. Inf Commun Soc. 2012;15(5):662–79.

    Article  Google Scholar 

  14. Rose N. ‘Screen and intervene’: governing risky brains. Hist Hum Sci. 2010;23(1):79–105.

    Article  Google Scholar 

  15. Poste G. Bring on the biomarkers. Nature. 2011;469(7329):156–7.

    Article  CAS  PubMed  Google Scholar 

  16. Tversky A, Kahneman D. Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychol Rev. 1983;90(4):23.

    Article  Google Scholar 

  17. Frankel RM, Stein T. Getting the most out of the clinical encounter: the four habits model. Perm J. 1999;3(3):79–88.

    Google Scholar 

  18. Kitchin R. Big data, new epistemologies and paradigm shifts. Big Data Soc. 2014;1(1):2053951714528481.

    Article  Google Scholar 

  19. Dinov ID, Heavner B, Tang M, Glusman G, Chard K, Darcy M, et al. Predictive big data analytics: a study of Parkinson’s disease using large, complex, heterogeneous, incongruent, multi-source and incomplete observations. PLoS One. 2016;11(8):e0157077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gao C, Sun H, Wang T, Tang M, Bohnen NI, Müller MLTM, et al. Model-based and model-free machine learning techniques for diagnostic prediction and classification of clinical outcomes in Parkinson’s disease. Sci Rep. 2018;8(1):7129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mittelstadt BD, Floridi L. The ethics of big data: current and foreseeable issues in biomedical contexts. Sci Eng Ethics. 2016;22(2):303–41.

    Article  PubMed  Google Scholar 

  22. Marino S, Xu J, Zhao Y, Zhou N, Zhou Y, Dinov ID. Controlled feature selection and compressive big data analytics: applications to biomedical and health studies. PLoS One. 2018;13(8):e0202674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Adamson AS, Smith A. Machine learning and health care disparities in dermatology. JAMA Dermatol. 2018;154(11):1247–8.

    Article  PubMed  Google Scholar 

  24. Bezemer T, de Groot MCH, Blasse E, ten Berg MJ, Kappen TH, Bredenoord AL, et al. A human(e) factor in clinical decision support systems. J Med Internet Res. 2019;21(3):e11732.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen IY, Szolovits P, Ghassemi M. Can AI help reduce disparities in general medical and mental health care. AMA J Ethics. 2019;21(2):167–79.

    Article  Google Scholar 

  26. Kuhn TS, Hacking I. The structure of scientific revolutions. 4th ed. Chicago/London: The University of Chicago Press; 2012. 217 p.

    Book  Google Scholar 

  27. Becker D. Through the looking glass: women and borderline personality disorder [Internet]. 1st ed. Routledge; 2019 [cited 2021 Mar 23]. https://www.taylorfrancis.com/books/9780429964206

  28. Metzl JM. The protest psychosis: how schizophrenia became a black disease [Internet]. Boston: Beacon Press; 2014 [cited 2021 Mar 23]. http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=715745

  29. Murray S. Corporeal knowledges and deviant bodies: perceiving the fat body. Soc Semiot. 2007;17(3):361–73.

    Article  Google Scholar 

  30. van Ryn M, Burke J. The effect of patient race and socio-economic status on physicians’ perceptions of patients. Soc Sci Med. 2000;50(6):813–28.

    Article  PubMed  Google Scholar 

  31. Olkin R, Hayward H, Abbene MS, VanHeel G. The experiences of microaggressions against women with visible and invisible disabilities. J Soc Issues. 2019;75(3):757–85.

    Article  Google Scholar 

  32. Hamilton N, Olumolade O, Aittama M, Samoray O, Khan M, Wasserman JA, et al. Access barriers to healthcare for people living with disabilities. J Public Health (Berl) [Internet]. 2020 Oct 10 [cited 2021 Mar 23]. http://link.springer.com/10.1007/s10389-020-01383-z

  33. Fricker M. Epistemic injustice: power and the ethics of knowing. Oxford/New York: Oxford University Press; 2007. 188 p.

    Book  Google Scholar 

  34. Peled Y. Language barriers and epistemic injustice in healthcare settings. Bioethics. 2018;32(6):360–7.

    Article  PubMed  Google Scholar 

  35. Tasca C, Rapetti M, Carta MG, Fadda B. Women and hysteria in the history of mental health. CPEMH. 2012;8(1):110–9.

    Article  Google Scholar 

  36. Foucault M. The birth of the clinic: an archaeology of medical perception. 1. publ., reprinted. London: Routledge; 2010. 266 p. (Routledge classics).

    Google Scholar 

  37. Vincent J. Google ‘fixed’ its racist algorithm by removing gorillas from its image-labeling tech [Internet]. The Verge. 2018 [cited 2021 Mar 24]. https://www.theverge.com/2018/1/12/16882408/google-racist-gorillas-photo-recognition-algorithm-ai

  38. Garcia M. Racist in the machine: the disturbing implications of algorithmic bias. World Policy J. 2016;33(4):111–7.

    Article  Google Scholar 

  39. Caliskan A, Bryson JJ, Narayanan A. Semantics derived automatically from language corpora contain human-like biases. Science. 2017;356(6334):183–6.

    Article  CAS  PubMed  Google Scholar 

  40. Erden YJ, Hummerstone H, Rainey S. Automating autism assessment: what AI can bring to the diagnostic process. J Eval Clin Pract. 2020;27:485. https://doi.org/10.1111/jep.13527.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bargiela S, Steward R, Mandy W. The experiences of late-diagnosed women with autism spectrum conditions: an investigation of the female autism phenotype. J Autism Dev Disord. 2016;46(10):3281–94.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Worms F. The two concepts of care. Life, medicine, and moral relations. Esprit. 2006;1:141.

    Article  Google Scholar 

  43. Beauchamp TL, Childress JF. Principles of biomedical ethics. Oxford: Oxford University Press; 2012.

    Google Scholar 

  44. Castelvecchi D. Can we open the black box of AI? Nat News. 2016;538(7623):20.

    Article  CAS  Google Scholar 

  45. Char DS, Shah NH, Magnus D. Implementing machine learning in health care – addressing ethical challenges. N Engl J Med. 2018;378(11):981–3.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity. Ann Intern Med. 2018;169(12):866–72.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Packhäuser K, Gündel S, Münster N, Syben C, Christlein V, Maier A. Is medical chest X-ray data anonymous? arXiv:210308562 [CS, EESS] [Internet]. 2021 Mar 15 [cited 2021 Mar 24]. http://arxiv.org/abs/2103.08562

  48. Matuchansky C. Intelligence clinique et intelligence artificielle. Une question nuance med/sci. 2019;35:797–803.

    Google Scholar 

  49. Susskind RE, Susskind D. The future of the professions: how technology will transform the work of human experts. Oxford University Press; 2015.

    Book  Google Scholar 

  50. Powles J, Hodson H. Google DeepMind and healthcare in an age of algorithms. Heal Technol. 2017;7(4):351–67.

    Article  Google Scholar 

  51. Coeckelbergh M. Health care, capabilities, and AI assistive technologies. Ethical Theory Moral Pract. 2010;13:181–90.

    Article  Google Scholar 

  52. Molinier P. De la civilisation du travail à la société du care. Vie sociale. 2016;14(2):127–40.

    Article  Google Scholar 

  53. Sharon T. When digital health meets digital capitalism, how many common goods are at stake? Big Data & Society; 2018.

    Book  Google Scholar 

  54. Hleg A. High-level expert group on artificial intelligence: ethics guidelines for trustworthy AI. European Commission, 0904; 2019.

    Google Scholar 

  55. Resseguier A, Brey P, Dainow B, Drozdzewska A, Santiago N, Wright D. D5.4: multi-stakeholder strategy and practical tools for ethical AI and robotics. SIENNA; 2021.

    Google Scholar 

  56. Resseguier A, Rodrigues R. Ethics as attention to context: recommendations for the ethics of artificial intelligence. Open Research Europe; 2021.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Rainey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rainey, S., Erden, Y.J., Resseguier, A. (2021). AIM, Philosophy and Ethics. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_243-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_243-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics