Skip to main content

AIM in Rehabilitation

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine
  • 59 Accesses

Abstract

Technological advancements in the past decade, especially in the field of Artificial Intelligence (AI), have influenced almost every industry, and the field of medicine is not an exception. From robots taking care of time-consuming, repetitive tasks in hospitals to rapid cancer diagnosis methodologies developing every day, it is visible that AI has potential to help further the medical discipline.

AI in rehabilitation has broad usability, such as assisting in the rehabilitation session, evaluating the treatment progress (decision support), and providing prognosis regarding risk of complications or success of the treatment.

In this chapter, firstly rehabilitation and its specialties will be explained followed by a thorough explanation of why AI can be helpful in rehabilitation. Furthermore, different applications of AI in this field will be discussed. The chapter also brings some examples from recent studies and state-of-the-art research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Huang S, et al. Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges. Cancer Lett. 2020;471:61–71.

    Article  CAS  Google Scholar 

  2. De Cannière H, Corradi F, Smeets CJ, Schoutteten M, Varon C, Van Hoof C, Van Huffel S, Groenendaal W, Vandervoort P. Wearable monitoring and interpretable machine learning can objectively track progression in patients during cardiac rehabilitation. Sensors. 2020;20(12):3601.

    Article  Google Scholar 

  3. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/rehabilitation. Accessed 30 Jan 2021.

  4. Kolar P. Clinical rehabilitation. Alena Kobesová; 2014.

    Google Scholar 

  5. Kumar SP. Physical therapy: past, present and future-a paradigm shift. J Phys Ther. 2010;1(2):58–67.

    Google Scholar 

  6. Binkley J, et al. Diagnostic classification of patients with low back pain: report on a survey of physical therapy experts. Phys Ther. 1993;73(3):138–50.

    Article  CAS  Google Scholar 

  7. Danubianu M, Pentiuc SG, Schipor OA, Nestor M, Ungureanu I. Distributed intelligent system for personalized therapy of speech disorders. In: 2008 the third international multi-conference on computing in the global information technology (ICCGI 2008) 2008 Jul 27. IEEE. p. 166–70.

    Google Scholar 

  8. Wilson BA. Neuropsychological rehabilitation. Annu Rev Clin Psychol. 2008;4:141–62.

    Article  Google Scholar 

  9. Sirsat YA, i Badia SB, Fermé E. AI-rehab: a framework for ai driven neurorehabilitation training the profiling challenge. InHealthinf. 2020;845–853.

    Google Scholar 

  10. Robinson G, Weekes G. Rehabilitation in clinical neuropsychology. 2007. https://doi.org/10.4324/9780203783924.

  11. Wilms I. Using artificial intelligence to control and adapt level of difficulty in computer-based, cognitive therapy–an explorative study. J Cyberther Rehabil. 2011;4:387.

    Google Scholar 

  12. Gross DP, Haws C, Park J. Occupational rehabilitation. In: Gellman MD, editor. Encyclopedia of behavioral medicine. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-39903-0_101938.

    Chapter  Google Scholar 

  13. Ross J. Occupational therapy and vocational rehabilitation. Wiley; 2013.

    Google Scholar 

  14. Leightley D, Darby J, Li BH, McPhee JS, Yap MH. Human activity recognition for physical rehabilitation. IEEE Syst Man Cybern. 2013;261–6. https://doi.org/10.1109/Smc.2013.51.

  15. McLeod A, Bochniewicz EM, Lum PS, Holley RJ, Emmer G, Dromerick AW. Using wearable sensors and machine learning models to separate functional upper extremity use from walking-associated arm movements. Arch Phys Med Rehabil. 2016;97(2):224–31. https://doi.org/10.1016/j.apmr.2015.08.435.

    Article  PubMed  Google Scholar 

  16. Zhu M, Zhang Z, Hirdes JP, Stolee P. Using machine learning algorithms to guide rehabilitation planning for home care clients. BMC Med Inform Decis Mak. 2007;7(1):1–3.

    Article  CAS  Google Scholar 

  17. Fong J, Ocampo R, Gross DP, Tavakoli M. Intelligent robotics incorporating machine learning algorithms for improving functional capacity evaluation and occupational rehabilitation. J Occup Rehabil. 2020;30:362–70.

    Article  Google Scholar 

  18. Shirzad N, Van der Loos HFM. Adaptation of task difficulty in rehabilitation exercises based on the user’s motor performance and physiological responses. In: 2013 IEEE 13th international conference on rehabilitation robotics (ICORR). 2013.

    Google Scholar 

  19. Zhao Y, Liang C, Gu Z, Zheng Y, Wu Q. A new design scheme for intelligent upper limb rehabilitation training robot. Int J Environ Res Public Health. 2020;17(8):2948.

    Article  Google Scholar 

  20. Reinkensmeyer DJ. Rehabilitation Robot. https://www.britannica.com/technology/rehabilitation-robot. Accessed 24 Jan 2021.

  21. Luxton DD, Riek LD. Artificial intelligence and robotics in rehabilitation. In: Brenner LA, Reid-Arndt SA, Elliott TR, Frank RG, Caplan B, (eds), Handbook of rehabilitation psychology. American Psychological Association. 2019;507–20. https://doi.org/10.1037/0000129-031.

  22. Atkeson CG, Schaal S. Robot learning from demonstration. In: Proceedings of the fourteenth international conference on machine learning (ICML ‘97), vol. 97. Morgan Kaufmann; 1997. p. 12–20.

    Google Scholar 

  23. Najafi M, Adams K, Tavakoli M. Robotic learning from demonstration of therapist’s time-varying assistance to a patient in trajectory-following tasks. In: 2017 international conference on rehabilitation robotics (ICORR). IEEE; 2017. p. 888–94.

    Chapter  Google Scholar 

  24. Klein T, Gelderblom GJ, Witte LD, Vanstipelen S. Evaluation of short-term effects of the IROMEC robotic toy for children with developmental disabilities. IEEE Int Conf Rehabil Robot. 2011;2011:1–5.

    Google Scholar 

  25. Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6(1):75–87.

    Article  CAS  Google Scholar 

  26. Gui K, Liu H, Zhang D. Toward multimodal human–robot interaction to enhance active participation of users in gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2017;25(11):2054–66.

    Article  Google Scholar 

  27. Bingjing G, et al. Human–robot interactive control based on reinforcement learning for gait rehabilitation training robot. Int J Adv Robot Syst. 2019;16(2):1729881419839584.

    Article  Google Scholar 

  28. Lee MH, Siewiorek DP, Smailagic A, Bernardino A. Opportunities of a machine learning-based decision support system for stroke rehabilitation assessment. arXiv preprint arXiv:2002.12261. 2020.

    Google Scholar 

  29. Ceccaroni L, Subirats L. Interoperable knowledge representation in clinical decision support systems for rehabilitation. Int J Appl Comput Math. 2012;11(2):303–16.

    Google Scholar 

  30. Bergeron MF, et al. Episodic-memory performance in machine learning modeling for predicting cognitive health status classification. J Alzheimers Dis. 2019;70:277–86.

    Article  Google Scholar 

  31. Illavarason P, Renjit JA, Kumar PM. Medical diagnosis of cerebral palsy rehabilitation using eye images in machine learning techniques. J Med Syst. 2019;43(8):1–24.

    Article  Google Scholar 

  32. Casilari E, Oviedo-Jiménez MA. Automatic fall detection system based on the combined use of a smartphone and a smartwatch. PLoS One. 2015;10(11):e0140929.

    Article  Google Scholar 

  33. Pillai M, Yang Y, Ditmars C, Subhash H. Artificial intelligence-based interactive virtual reality-assisted gaming system for hand rehabilitation. In: Medical imaging 2020: imaging informatics for healthcare, research, and applications, vol. 11318. International Society for Optics and Photonics; 2020. p. 113180J.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parastu Rahgozar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rahgozar, P. (2021). AIM in Rehabilitation. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_177-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_177-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics