Skip to main content

Prediction of Residual Service Life of Oil Pipeline Under Non-stationary Oil Flow Taking into Account Steel Degradation

  • Conference paper
  • First Online:
Degradation Assessment and Failure Prevention of Pipeline Systems

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 102))

Abstract

Analytical researches of growth of internal surface cracks in oil pipeline pipe wall under real conditions of operation and determination of its residual service life were carried out. The analysis of the operating conditions of the pipeline was carried out during the research. It is believed that the flow of oil is turbulent with possible hydraulic shocks; produced water is collected at the bottom of the pipe, which causes corrosion in contact with a crack in the pipe wall. An important point in these studies is to consider the corrosion-hydrogen degradation of the pipe material (X60 steel) when calculating its residual life. Such calculations are based on a mathematical model of corrosion crack growth in metallic materials under appropriate loading conditions, in particular time variables (turbulent oil flow with hydraulic shocks), the action of the corrosive environment (groundwater) and the change in the characteristics of X60 steel over time as a result of its degradation. It is shown that the turbulence of the oil flow and the shocks significantly reduce the residual life of the pipeline. The degradation of its material (X60 steel) over time puts the value of this resource in the interval between the values of the residual life of the degraded and not degraded pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nykyforchyn, H., Krechkovska, H., Student, O., Zvirko, O.: Feature of stress corrosion cracking of degraded gas pipeline steels. Procedia Struct. Integrity 16, 153–160 (2016)

    Article  Google Scholar 

  2. Maruschak, P., Bishchak, R., Konovalenko, I., Menou, A., Brezinová, J.: Effect of long term operation on degradation of material of main gas pipelines. Mater. Sci. Forum 782, 279–283 (2014)

    Article  Google Scholar 

  3. Andreikiv O. E., Ivanyts’kyi, Y.L., Terlets’ka, Z.O., Kit, M.B.: Evaluation of the durability of a pipe of oil pipeline with surface crack under biaxial block loading. Mater. Sci. 3(40), 408–415 (2004)

    Google Scholar 

  4. Kryzhanivs’kyi, E.I., Nykyforchyn, H.M.: Specific features of hydrogen-induced corrosion degradation of steels of gas and oil pipelines and oil storage reservoirs. Mater. Sci. 47(2), 127–136 (2011)

    Article  Google Scholar 

  5. Andreikiv, O.Y., Nykyforchyn, H.M., Shtoiko, I.P., Lysyk, A.R.: Evaluation of the residual life of a pipe of oil pipeline with an external surface stress-corrosion crack for a laminar flow of oil with repeated hydraulic shocks. Mater. Sci. 53(2), 216–226 (2017)

    Article  Google Scholar 

  6. Elboujdaini M.: Initiation of environmentally assisted cracking in line pipe steel. In: 16th European Conference on Fracture (ECF16th) “Fracture of Nano and Engineering materials and structures”, pp. 1007–1008. Alexandroupolis, Greece, July 3–7, 2006. Dordrecht: Springer (2006)

    Google Scholar 

  7. Nykyforchyn, H., Tsyrulnyk, O., Zvirko, O.: Electrochemical fracture analysis of in-service natural gas pipeline steels. Procedia Struct. Integrity 13, 1215–1220 (2018)

    Article  Google Scholar 

  8. Tsyrul'nyk, O.T., Slobodyan, Z.V., Zvirko, O.I., Hredil’, M.I., Nykyforchyn, H.M., Gabetta, G.: Influence of operation of Kh52 steel on corrosion processes in a model solution of gas condensate Mater. Sci. 44(5), 619–629 (2008)

    Google Scholar 

  9. Slobodyan, Z.V., Nykyforchyn, H.M., Petrushchak, O.I.: Corrosion resistance of pipe steel in oil-water media. Mater. Sci. 38(3), 424–429 (2002)

    Article  Google Scholar 

  10. Andreikiv O.E., Hembara O.V., Tsyrul’nyk O.T., Nyrkova L.I.: Evaluation of the residual lifetime of a section of a main gas pipeline after long-term operation. Mater. Sci. 48(2), 231–238, (2012)

    Google Scholar 

  11. Andreikiv, O.E., Hembara, O.V.: Influence of soil corrosion and transported products on the service life of welded joints of oil and gas pipelines. Mater. Sci. 49(2), 189–198 (2013)

    Article  Google Scholar 

  12. Andreikiv, O.E., Sas, N.B.: Subcritical growth of a plane crack in a three-dimensional body under the conditions of high-temperature creep. Mater. Sci. 44(2), 163–174 (2008)

    Article  Google Scholar 

  13. Heydari, M., Avazzadeh, Z., Navabpour, H., Loghmani, G.B.: Numerical solution of Fredholm integral equations of the second kind by using integral mean value theorem II. High Dimensional Problems. Applied Mathematical Modelling 37(1–2), 432–442 (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Andreykiv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andreykiv, O., Hembara, O., Dolinska, I., Sapuzhak, Y., Yadzhak, N. (2021). Prediction of Residual Service Life of Oil Pipeline Under Non-stationary Oil Flow Taking into Account Steel Degradation. In: Bolzon, G., Gabetta, G., Nykyforchyn, H. (eds) Degradation Assessment and Failure Prevention of Pipeline Systems. Lecture Notes in Civil Engineering, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-030-58073-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58073-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58072-8

  • Online ISBN: 978-3-030-58073-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics