Skip to main content

Non-destructive Mechanical Testing of Pipelines

  • Conference paper
  • First Online:
Degradation Assessment and Failure Prevention of Pipeline Systems

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 102))

Abstract

Strategic infrastructures made of pipelines transporting hydrocarbons across the world are exposed to the risk of failure due to damage accumulation during operation. The degradation process is promoted by material aging and enhanced by harsh service conditions. Severe consequences can be prevented by the long-life monitoring and integrity assessment of materials and components. Structural diagnosis can be assisted by non-destructive mechanical testing. This chapter provides an overview on the procedures at present available for pipeline steels in this context. The information content of hardness and instrumented indentation tests is specifically addressed. The focus is on the reliability of the predictions that can be provided by small sampling sizes when experimental information and numerical simulations are combined. The significance of such methodology for the evaluation of the current properties of exercised pipelines is illustrated together with the relevant validation studies. The gains resulting from the progressive technological advancements are also evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolzon, G., Boukharouba, T., Gabetta, G., Elboujdaini, M., Mellas, M. (eds.): Integrity of pipelines transporting hydrocarbons. In: Proceedings of the NATO Advanced Research Workshop on Corrosion Protection of Pipelines Transporting Hydrocarbons, Biskra, Algeria, 26–28 April 2010. Earth and Environmental Science NATO Science for Peace and Security Series C: Environmental Security. Springer, Heidelberg (2011)

    Google Scholar 

  2. Pirani, S., Yafimava, K.: Russian gas transit across Ukraine post-2019: pipeline scenarios, gas flow consequences, and regulatory constraints. Oxford Institute for Energy Studies, Oxford, UK (2016)

    Book  Google Scholar 

  3. Haesen, E., Vingerhoets, P., Koper, M., Georgiev, I., Glenting, C., Goes, M., Hussy, C.: Investment needs in trans-European energy infrastructure up to 2030 and beyond. In: Final Report. ECOFYS Netherlands B.V., 2017 Publications Office of the European Union, Luxembourg (2018).

    Google Scholar 

  4. Sherif, S.A., Barbir, F., Veziroglu, T.N.: Wind energy and the hydrogen economy—review of the technology. Sol. Energy 78, 647–660 (2005)

    Article  Google Scholar 

  5. Ren, L., Jiang, T., Jia, Z., Li, D., Yuan, C., Li, H.: Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology. Measurement 122, 57–65 (2018)

    Article  Google Scholar 

  6. Wright, R.F., Lu, P., Devkota, J., Lu, F., Ziomek-Moroz, M., Ohodnicki, P.R., Jr.: Corrosion sensors for structural health monitoring of oil and natural gas infrastructure: a review. Sensors 19, 3964 (2019)

    Article  Google Scholar 

  7. Gupta, A., Sinbad, A.: Introduction to pigging & a case study on pigging of an onshore crude oil trunkline. Int. J. Latest Technol. Eng. Manage. Appl. Sci. 5, 18–25 (2016)

    Google Scholar 

  8. Hardie, D., Charles, E.A., Lopez, A.H.: Hydrogen embrittlement of high strength pipeline steels. Corros. Sci. 48, 4378–4385 (2006)

    Article  Google Scholar 

  9. Capelle, J., Gilgert, J., Dmytrakh, I., Pluvinage, G.: Sensitivity of pipelines with steel API X52 to hydrogen embrittlement. Int. J. Hydrogen Energy 33, 7630–7641 (2008)

    Article  Google Scholar 

  10. Nykyforchyn, H., Lunarska, E., Tsyrulnyk, O.T., Nikiforov, K., Gennaro, M.E., Gabetta, G.: Environmentally assisted in-bulk steel degradation of long term service gas trunkline. Eng. Fail. Anal. 17, 624–632 (2010)

    Article  Google Scholar 

  11. Fassina, P., Bolzoni, F., Fumagalli, G., Lazzari, L., Vergani, L., Sciuccati, A.: Influence of hydrogen and low temperature on behavior of two pipeline steels. Eng. Fract. Mech. 81, 43–55 (2012)

    Article  Google Scholar 

  12. Chernov, V.M., Kardashev, B.K., Moroz, K.A.: Low-temperature embrittlement and fracture of metals with different crystal lattices—dislocation mechanisms. Nuclear Mater. Energy 9, 496–501 (2016)

    Article  Google Scholar 

  13. Benac, D.J., Cherolis, N., Wood, D.: Managing cold temperature and brittle fracture hazards in pressure vessels. J. Fail. Anal. Prev. 16, 55–66 (2016)

    Article  Google Scholar 

  14. ISO Standards 148-1: Metallic materials—Charpy pendulum—impact test. International Organization for Standardization, Geneva, Switzerland (2016)

    Google Scholar 

  15. ASTM Standards E 1820-20: Standard test method for measurement of fracture toughness. American Society of Testing and Materials, West Conshohocken, USA (2020)

    Google Scholar 

  16. Fleury, E., Ha, J.S.: Small punch test to estimate the mechanical properties of steels for steam power plant: I mechanical strength. Int. J. Press. Vessels Piping 75, 699–706 (1998)

    Article  Google Scholar 

  17. Campitelli, E.N., Spätig, P., Bonadé, R., Hoffelner, W., Victoria, M.: Assessment of the constitutive properties from small ball punch test: experiment and modeling. J. Nucl. Mater. 335(3), 366–378 (2004)

    Article  Google Scholar 

  18. Chang, Y.S., Kim, J.M., Choi, J.B., Kim, Y.J., Kim, M.C., Lee, B.S.: Derivation of ductile fracture resistance by use of small punch specimens. Eng. Fract. Mech. 75, 3413–3427 (2008)

    Article  Google Scholar 

  19. Cárdenas, E., Belzunce, F.J., Rodríguez, C., Peñuelas, I., Betegón, C.: Application of the small punch test to determine the fracture toughness of metallic materials. Fatigue Fract. Eng. Mater. Struct. 35, 441–450 (2014)

    Article  Google Scholar 

  20. Bolzon, G., Rivolta, B., Nykyforchyn, H., Zvirko, O.: Mechanical analysis at different scales of gas pipelines. Eng. Fract. Mech. 90, 434–439 (2018)

    Google Scholar 

  21. ISO Standards 14577–1: Metallic materials—instrumented indentation test for hardness and materials parameter—part 1: test method. International Organization for Standardization, Geneva, Switzerland (2015)

    Google Scholar 

  22. ISO/TR Standards 29381: Metallic materials—measurement of mechanical properties by an instrumented indentation test—indentation tensile properties. International Organization for Standardization, Geneva, Switzerland (2008)

    Google Scholar 

  23. Seok, C., Koo, J.: Evaluation of material degradation of 1Cr-1Mo-0.25V steel by ball indentation and resistivity. J. Mater. Sci. 41, 1081–1087 (2006)

    Google Scholar 

  24. Bolzon, G., Gabetta, G., Molinas, B.: Integrity assessment of pipeline systems by an enhanced indentation technique. ASCE J. Pipeline Syst. Eng. Pract. 6(1), 1–7 (2015)

    Google Scholar 

  25. Jang, J.I., Choi, Y., Lee, J.S., Lee, Y.H., Kwon, D., Gao, M., Kania, R.: Application of instrumented indentation technique for enhanced fitness-for-service assessment of pipeline crack. Int. J. Fract. 131(1), 15–33 (2005)

    Article  Google Scholar 

  26. Bolzon, G., Molinas, B., Talassi, M.: Mechanical characterisation of metals by indentation tests: an experimental verification study for on-site applications. Strain 48(6), 517–527 (2012)

    Article  Google Scholar 

  27. Bolzon, G., Buljak, V., Maier, G., Miller, B.: Assessment of elastic–plastic material parameters comparatively by three procedures based on indentation test and inverse analysis. Inverse Probl. Sci. Eng. 19(6), 815–837 (2011)

    Article  Google Scholar 

  28. Mulford, R., Asaro, R.J., Sebring, R.J.: Spherical indentation of ductile power law materials. J. Mater. Res. 19, 2641–2649 (2004)

    Article  Google Scholar 

  29. Shao, Y., Qin, W., Liu, H., Qu, J., Peng, X., Niu, H., Gao, B.Z.: Multifocal multiphoton microscopy based on a spatial light modulator. Appl. Phys. B 107(3), 653–657 (2013)

    Article  Google Scholar 

  30. https://www.alicona.com/en/products/portablerl/. Accessed on 26 Feb 2020

  31. https://nanovea.com/portable-profilometer/. Accessed on 26 Feb 2020

  32. https://www.easyarm.it/eng/index.php. Accessed on 26 Feb 2020

  33. Bolzon, G., Rivolta, B., Nykyforchyn, H., Zvirko, O.: Micro and macro mechanical analysis of gas pipeline steels. Proc. Struct. Integrity 5, 627–632 (2017)

    Article  Google Scholar 

  34. Bolzon, G., Talassi, M.: Toward a non-destructive diagnostic analysis tool of exercised pipelines: models and experiences. Proc. Struct. Integr. 13, 648–651 (2018)

    Article  Google Scholar 

  35. Bolzon, G.: Advances in experimental mechanics by the synergetic combination of full-field measurement techniques and computational tools. Measurement 54, 159–165 (2014)

    Article  Google Scholar 

  36. Stavroulakis, G.E., Bolzon, G., Waszczyszyn, Z., Ziemianski, L.: Inverse analysis. In: Reference Module in Hashmi, S. (ed.) Materials Science and Materials Engineering, pp. 1–39. Elsevier, Oxford, UK (2016)

    Google Scholar 

  37. Papadrakakis, M., Lagaros, N.D., Tsompanakis, Y., Plevris, V.: Large scale structural optimization: computational methods and optimization algorithms. Arch. Comput. Methods Eng. 8, 239–301 (2001)

    Article  MathSciNet  Google Scholar 

  38. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Fiume, E. (ed.), Proceedings of SIGGRAPH 2001, Computer Graphics Annual Conference, Los Angeles, CA, 12–17 July 2001, pp. 67–76. ACM Press, New York (2001)

    Google Scholar 

  39. Ly, H.V., Tran, H.T.: Modeling and control of physical processes using proper orthogonal decomposition. Math. Comput. Model. 33, 223–236 (2001)

    Article  Google Scholar 

  40. Bolzon, G., Talassi, M.: Model reduction techniques in computational materials mechanics. In: Zavarise, G., Boso, D.P. (eds.) Bytes and Science, pp. 131–141. CIMNE, Barcelona (2012)

    Google Scholar 

  41. Schilders, W.H., Van der Vorst, H.A., Rommes, J. (eds.): Model order reduction: theory, research aspects and applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  42. Bolzon, G., Rivolta, B.: Mechanical characterization of metals by small sampling size. Proc. Struct. Integr. 21, 185–189 (2019)

    Article  Google Scholar 

  43. Bhushan, B.: Handbook of micro/nano tribology. CRC Press, Boca Raton (1999)

    Google Scholar 

  44. Bolzon, G., Bocciarelli, M., Chiarullo, E.J.: Mechanical characterization of materials by micro-indentation and AFM scanning. In: Bhushan, B., Fuchs, H. (eds.) Applied Scanning Probe Methods XII—Characterization, pp. 85–120. Springer, Berlin (2008)

    Google Scholar 

  45. Bolzon, G., Zvirko, O.: An indentation based investigation on the characteristics of artificially aged pipeline steels. Proc. Struct. Integr. 3C, 172–175 (2017)

    Article  Google Scholar 

  46. ISO Standards 6508–1: Metallic materials—rockwell hardness test—part 1: test method. International Organization for Standardization, Geneva, Switzerland (2016)

    Google Scholar 

  47. Meng, L., Breitkof, P., Le Quilliec, G.: Identification of material parameters using indentation test—study of the intrinsic dimensionality of P-h curves and residual imprints. In: Proceedings of NUMIFORM 2016, 12th International Conference on Numerical Methods in Industrial Forming Processes, Troyes, France, 4–7 July 2016. MATEC Web of Conferences 80, 100012, pp. 1–5 (2016)

    Google Scholar 

  48. Bolzon, G., Maier, G., Panico, M.: Material model calibration by indentation, imprint mapping and inverse analysis. Int. J. Solids Struct. 41, 2957–2975 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This paper summarizes the work carried out within the research project ‘Development of novel methods for the prevention of pipeline failures with security implications’ with the substantial contribution of G. Cornaggia, H. Nykyforchyn, B. Rivolta, M. Talassi, O. Zvirko. The financial support provided by NATO in the frame of the ‘Science for Peace and Security’ program is gratefully acknowledged (SPS G5055 project). Thanks are also due to P. P. Zonta and to his Company (EniProgetti, eni group) for the support offered to the studies presented in this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Bolzon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bolzon, G. (2021). Non-destructive Mechanical Testing of Pipelines. In: Bolzon, G., Gabetta, G., Nykyforchyn, H. (eds) Degradation Assessment and Failure Prevention of Pipeline Systems. Lecture Notes in Civil Engineering, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-030-58073-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58073-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58072-8

  • Online ISBN: 978-3-030-58073-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics