Skip to main content

Assessing Irrigation Water Requirement and Its Trend for Betwa River Basin, India

  • Chapter
  • First Online:
Water Management and Water Governance

Part of the book series: Water Science and Technology Library ((WSTL,volume 96))

  • 541 Accesses

Abstract

In this study, Remote Sensing (RS) and Geographical Information System (GIS) are used to estimate the crop coefficient (Kc) and crop evapotranspiration (ETc) of the Betwa basin (Area = 43,500 km2) of Central India. Reference crop evapotranspiration (ETo) was calculated for 18 stations of the Betwa basin using CROPWAT 8.0 software for November to April. Crop coefficients were estimated by developing its relationship with RS derived Soil Adjusted Vegetation Index (SAVI). The Kc and ETo maps for respective months were integrated to obtain spatial variation of crop evapotranspiration (ETc) in the Betwa basin. Analysis revealed that irrigation water requirements in the Betwa basin from November to April were 54.57, 85.74, 74.54, 63.82, 71.62, and 23.14 Mm3. Further, trend analysis of irrigation water requirement using Mann–Kendall test and Sen’s slope estimator showed a negative trend in Rabi season except in the month of December.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Aziz OI, Burn DH (2006) Trends and variability in the hydrological regime of the Mackenzie River Basin. J Hydrol 319(1):282–294

    Article  Google Scholar 

  • Aghdasi F (2010) Crop water requirement assessment and annual planning of water allocation, M.Sc., Faculty ITC, Twente University

    Google Scholar 

  • Agrawal S, Joshi P, Shukla Y, Roy P (2003) SPOT vegetation multi temporal data for classifying vegetation in south. Curr Sci 84(11)

    Google Scholar 

  • Aguilar C, Polo MJ (2011) Generating reference evapotranspiration surfaces from the Hargreaves equation at watershed scale. Hydrol Earth Syst Sci 15:2495–2508

    Article  ADS  Google Scholar 

  • Ahmadi SH, Fooladmand HR (2008) Spatially distributed monthly reference evapotranspiration derived from the calibration of Thornthwaite equation: a case study. South of Iran, Irrigation Science 26(4):303–312

    Article  Google Scholar 

  • Allen RG, Pereira L, Raes D, Smith M (1998) FAO Irrigation and drainage paper No. 56. Food and Agriculture Organization of the United Nations, Rome, 26–40

    Google Scholar 

  • Allen RG, Tasumi M, Morse A, Trezza R (2005) A landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrig Drain Syst 19:251–268

    Article  Google Scholar 

  • Bandyopadhyay A, Bhadra A, Raghuwanshi N, Singh R (2009) Temporal trends in estimates of reference evapotranspiration over India. J Hydrol Eng 14(5):508–515

    Article  Google Scholar 

  • Bastiaanssen WG, Molden DJ, Makin IW (2000) Remote sensing for irrigated agriculture: examples from research and possible applications. Agric Water Manag 46(2):137–155

    Article  Google Scholar 

  • Bausch WC (1993) Soil background effects on reflectance-based crop coefficients for corn. Remote Sens Environ 46(2):213–222

    Article  ADS  Google Scholar 

  • Bausch WC (1995) Remote sensing of crop coefficients for improving the irrigation scheduling of corn. Agric Water Manag 27(1):55–68

    Article  Google Scholar 

  • Burn DH, Hag Elnur MA (2002) Detection of hydrologic trends and variability. J Hydrol 255:107–122

    Article  Google Scholar 

  • Burn DH, Cunderlik JM, Pietroniro A (2004) Hydrological trends and variability in the Liard River basin. Hydrol Sci J 49(1):53–67

    Article  Google Scholar 

  • Cai J, Liu Y, Lei T, Pereira LS (2007) Estimating reference evapotranspiration with the FAO Penman-Monteith equation using daily weather forecast messages. Agric For Meteorol 145(1):22–35

    Article  ADS  Google Scholar 

  • Calera A, Martínez C, Melia J (2001) A procedure for obtaining green plant cover: relation to NDVI in a case study for barley. Int J Remote Sens 22(17):3357–3362

    Article  Google Scholar 

  • Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62(3):241–252

    Article  ADS  Google Scholar 

  • Casa R, Rossi M, Sappa G, Trotta A (2009) Assessing crop water demand by remote sensing and GIS for the Pontina Plain, Central Italy. Water Resour Manag 23(9):1685–1712

    Article  Google Scholar 

  • Chakraborty S, Mishra SK, Pandey R, Chaube U (2013) Long-term changes of irrigation water requirement in the context of climatic variability. ISH J Hydraul Eng 19(3):257–266

    Article  Google Scholar 

  • Chatterjee SK, Banerjee S, Bose M (2012) Climate change impact on crop water requirement in Ganga River Basin, West Bengal, India. In: 3rd international conference on biology, environment and chemistry IPCBEE, vol 46

    Google Scholar 

  • Chaube UC, Suryavanshi S, Nurzaman L, Pandey A (2011) Synthesis of flow series of tributaries in Upper Betwa basin. Int J Environ Sci 1(7):59–75

    Google Scholar 

  • Clarke D, Smith M, El-Askari K (1992) CROPWAT—a computer program for irrigation planning and management. FAO Irrigation and Drainage paper 46, Rome, Italy

    Google Scholar 

  • Courault D, Seguin B, Olioso A (2005) Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrigat Drain Syst 19(3–4):223–249

    Article  Google Scholar 

  • Croitoru AE, Piticar A, Dragotă CS, Burada DC (2013) Recent changes in reference evapotranspiration in Romania. Glob Planet Change 111:127–132

    Google Scholar 

  • Darshana, Pandey A, Pandey R (2013) Analysing trends in reference evapotranspiration and weather variables in the Tons River Basin in Central India. Stoch Environ Res Risk Assess 1–15

    Google Scholar 

  • Dinpashoh Y, Jhajharia D, Fakheri-Fard A, Singh VP, Kahya E (2011) Trends in reference crop evapotranspiration over Iran. J Hydrol 399(3):422–433

    Article  Google Scholar 

  • Doorenbos J, Pruitt W (1977) Crop water requirements, FAO irrigation and drainage paper 24, land and water development division. FAO, Rome

    Google Scholar 

  • Duchemin B, Hadria R, Erraki S, Boulet G, Maisongrande P, Chehbouni A, Escadafal R, Ezzahar J, Hoedjes J, Kharrou M (2006) Monitoring wheat phenology and irrigation in Central Morocco: on the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric Water Manag 79(1):1–27

    Article  Google Scholar 

  • Duhan D, Pandey A (2013) Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmos Res 122(2013):136–149

    Article  Google Scholar 

  • Duhan D, Pandey A, Gahalaut KPS, Pandey RP (2013) Spatial and temporal variability in maximum, minimum and mean air temperatures at Madhya Pradesh in central India. CR Geosci 345(1):3–21

    Article  Google Scholar 

  • Espadafor M, Lorite I, Gavilán P, Berengena J (2011) An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. Agric Water Manag 98(6):1045–1061

    Article  Google Scholar 

  • Gontia NK, Tiwari KN (2010) Estimation of crop coefficient and evapotranspiration of wheat (Triticum aestivum) in an irrigation command using remote sensing and GIS. Water Resour Manage 24(7):1399–1414

    Article  Google Scholar 

  • Heinemann A, Hoogenboom G, De Faria R (2002) Determination of spatial water requirements at county and regional levels using crop models and GIS: An example for the State of Parana, Brazil. Agric Water Manag 52(3):177–196

    Article  Google Scholar 

  • Huete A (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  ADS  Google Scholar 

  • Jagtap S, Jones J (1989) Stability of crop coefficients under different climate and irrigation management practices. Irrig Sci 10(3):231–244

    Article  Google Scholar 

  • Jamali S, Seaquist J, Eklundh L, Ardö J (2014) Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote Sens Environ 141:79–89

    Article  ADS  Google Scholar 

  • Jayanthi H, Neale CM, Wright JL (2007) Development and validation of canopy reflectance-based crop coefficient for potato. Agric Water Manag 88(1):235–246

    Article  Google Scholar 

  • Jhajharia D, Dinpashoh Y, Kahya E, Singh VP, Fakheri-Fard A (2012) Trends in reference evapotranspiration in the humid region of northeast India. Hydrol Process 26(3):421–435

    Article  ADS  Google Scholar 

  • Jiang L, Islam S, Guo W, Singh Jutla A, Senarath SU, Ramsay BH, Eltahir E (2009) A satellite-based daily actual evapotranspiration estimation algorithm over South Florida. Glob Planet Change 67(1):62–77

    Article  ADS  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London, UK

    Google Scholar 

  • Maeda EE, Wiberg DA, Pellikka PK (2011) Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Appl Geogr 31(1):251–258

    Article  Google Scholar 

  • Mancosu N, Snyder RL, Spano D (2014) Procedures to develop a standardized reference evapotranspiration zone map. J Irrig Drainage Eng

    Google Scholar 

  • Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259

    Article  MathSciNet  MATH  Google Scholar 

  • Michael AM (1978) Irrigation theory and practice. Vikas Publishing House, India

    Google Scholar 

  • Mishra P, Tiwari KN, Chowdary VM, Gontia NK (2005) Irrigation water demand and supply analysis in the command area using remote sensing and GIS. Hydrol J IAH 28(1–2):59–69

    Google Scholar 

  • Ozdogan M (2010) The spatial distribution of crop types from MODIS data: temporal immixing using independent component analysis. Remote Sens Environ 114(6):1190–1204

    Article  ADS  Google Scholar 

  • Patra JP, Mishra A, Singh R, Raghuwanshi N (2012) Detecting rainfall trends in twentieth century (1871–2006) over Orissa State, India. Clim Change 111(3–4):801–817

    Article  ADS  Google Scholar 

  • Raki S, Chehbouni A, Guemouria N, Duchemin B, Ezzahar J, Hadria R (2007) Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agric Water Manag 87(1):41–54

    Article  Google Scholar 

  • Ray S, Dadhwal V (2001) Estimation of crop evapotranspiration of irrigation command area using remote sensing and GIS. Agric Water Manag 49(3):239–249

    Article  Google Scholar 

  • Salifu T, Agyare WA (2012) Distinguishing land use types using surface albedo and normalized difference vegetation index derived from the SEBAL model for the Atankwidi and Afram subcatchments in Ghana. J Eng Appl Sci 7(1)

    Google Scholar 

  • Seevers P, Ottmann R (1994) Evapotranspiration estimation using a normalized difference vegetation index transformation of satellite data. Hydrol Sci J 39(4):333–345

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stastitics Assoc 63:1379–1389

    Article  MathSciNet  MATH  Google Scholar 

  • Sheikh V, Mohammadi M (2013) Evaluation of reference evapotranspiration equations in semi-arid regions of Northeast of Iran. Int J Agric Crop Sci 5(5):450–456

    Google Scholar 

  • Suryavanshi S, Pandey A, Chaube UC, Joshi N (2013) Long-term historic changes in climatic variables of Betwa Basin, India. Theor Appl Climatol 1–16

    Google Scholar 

  • Tabari H, Marofi S, Aeini A, Talaee PH, Mohammad K (2011) Trend analysis of reference evapotranspiration in the western half of Iran. Agric For Meteorol 151(2):128–136

    Article  ADS  Google Scholar 

  • Talaee PH, Tabari H, Abghari H (2014) Pan evaporation and reference evapotranspiration trend detection in western Iran with consideration of data persistence. Hydrol Res 45(2):213–225

    Article  Google Scholar 

  • Tasumi M, Allen RG (2007) Satellite-based ET mapping to assess variation in ET with timing of crop development. Agric Water Manag 88(1):54–62

    Article  Google Scholar 

  • Theil H (1950) A rank invariant method of linear and polynomial regression analysis, Part 3. Netherlands Akademie van Wettenschappen, Proceeding 53:1397–1412

    MathSciNet  MATH  Google Scholar 

  • Tong L, Kang S, Zhang L (2007) Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China. Agric Water Manag 87(3):241–250

    Article  Google Scholar 

  • Xu CY, Gong L, Jiang T, Chen D, Singh V (2006) Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J Hydrol 327(1):81–93

    Article  Google Scholar 

  • Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman’s rho test for detecting monotonic trends in hydrological series. J Hydrol 259:254–271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, A., Pyasi, R.K., Palmate, S.S. (2021). Assessing Irrigation Water Requirement and Its Trend for Betwa River Basin, India. In: Pandey, A., Mishra, S., Kansal, M., Singh, R., Singh, V. (eds) Water Management and Water Governance. Water Science and Technology Library, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-030-58051-3_8

Download citation

Publish with us

Policies and ethics