Skip to main content

Dual Population Coding for Path Planning in Graphs with Overlapping Place Representations

  • Conference paper
  • First Online:
Spatial Cognition XII (Spatial Cognition 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12162))

Included in the following conference series:

  • 666 Accesses

Abstract

Topological schemes for navigation from visual snapshots have been based on graphs of panoramic images and action links allowing the transition from one snapshot point to the next; see, for example, Cartwright and Collett [5] or Franz et al. [9]. These algorithms can only work if at each step a unique snapshot is recognized to which a motion decision is associated. Here, we present a population coding approach in which place is encoded by a population of overlapping “firing fields”, each of which is activated by the recognition of an unspecific “micro-snapshot” (i.e. feature), and associated to a subsequent action. Agent motion is then computed by a voting scheme over all activated snapshot-to-action associations. The algorithm was tested in a large virtual environment (Virtual Tübingen [24]) and shows biologically plausible navigational abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Unity Technologies, Unity 2018.1.5f1, https://unity3d.com/, 2018.

References

  1. Baddeley, B., Graham, P., Husbands, P., Philippides, A.: A model of ant route navigation driven by scene familiarity. PLoS Comput. Biol. 8(1) (2012). https://doi.org/10.1371/journal.pcbi.1002336

  2. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robot features (SURF). Comput. Vis. Image Underst. 110, 346–359 (2008)

    Article  Google Scholar 

  3. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools 25, 120–125 (2000)

    Google Scholar 

  4. Cartwright, B.A., Collett, T.S.: How honey bees use landmarks to guide their return to a food source. Nature 295, 560–564 (1982)

    Article  Google Scholar 

  5. Cartwright, B.A., Collett, T.S.: Landmark maps for honeybees. Biol. Cybern. 57, 85–93 (1987). https://doi.org/10.1007/BF00318718

    Article  Google Scholar 

  6. Cheung, A., Vickerstaff, R.: Finding the way with a noisy brain. PLoS Comput. Biol. 9(11), e112544 (2010)

    MathSciNet  Google Scholar 

  7. Differt, D., Stürzl, W.: A generalized multi-snapshot model for 3D homing and route following. Adapt. Behav. (2020). https://doi.org/10.1177/1059712320911217

    Article  Google Scholar 

  8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  9. Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Learning view graphs for robot navigation. Auton. Robots 5, 111–125 (1998). https://doi.org/10.1023/A:1008821210922

    Article  Google Scholar 

  10. Kuipers, B.: Modeling spatial knowledge. Cogn. Sci. 2, 129–153 (1978)

    Article  Google Scholar 

  11. Kuipers, B.: The spatial semantic hierarchy. Artif. Intell. 119, 191–233 (2000)

    Article  MathSciNet  Google Scholar 

  12. Madl, T., Chen, K., Montaldi, D., Trappl, R.: Computational cognitive models of spatial memory in navigation space: a review. Neural Netw. 65, 18–43 (2015)

    Article  Google Scholar 

  13. Mallot, H.A., Basten, K.: Embodied spatial cognition: biological and artificial systems. Image Vis. Comput. 27, 1658–1670 (2009)

    Article  Google Scholar 

  14. Mallot, H.A., Gillner, S.: Route navigation without place recognition: what is recognized in recognition-triggered responses? Perception 29, 43–55 (2000)

    Article  Google Scholar 

  15. Mou, W.M., McNamara, T.P.: Intrinsic frames of reference in spatial memory. J. Exp. Psychol.: Learn. Mem. Cogn. 28, 162–170 (2002). https://doi.org/10.1037/0278-7393.28.1.162

  16. Muller, R.U., Stead, M., Pach, J.: The hippocampus as a cognitive graph. J. Gen. Physiol. 107, 663–694 (1996)

    Article  Google Scholar 

  17. O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Clarendon, Oxford (1978)

    Google Scholar 

  18. Schölkopf, B., Mallot, H.A.: View-based cognitive mapping and path planning. Adapt. Behav. 3, 311–348 (1995)

    Article  Google Scholar 

  19. Seelig, J., Jayaraman, V.: Neural dynamics for landmark orientation and angular path integration. Nature 521, 186 (2015)

    Article  Google Scholar 

  20. Smith, L., Philippides, A., Graham, P., Baddeley, B., Husbands, P.: Linked local navigation for visual route guidance. Adapt. Behav. 15(3), 257–271 (2007)

    Article  Google Scholar 

  21. Taube, J.: The head direction signal: origins and sensory-motor integration. Ann. Rev. Neurosci. 30, 181–207 (2007)

    Article  MathSciNet  Google Scholar 

  22. Tolman, E.C.: Purposive Behavior in Animals and Men. The Century Co., New York (1932)

    Google Scholar 

  23. Trullier, O., Wiener, S.I., Berthoz, A., Meyer, J.A.: Biologically based artificial navigation systems: review and prospects. Progr. Neurobiol. 51, 483–544 (1997)

    Article  Google Scholar 

  24. van Veen, H.A.H.C., Distler, H.K., Braun, S.J., Bülthoff, H.H.: Navigating through a virtual city: using virtual reality technology to study human action and perception. Future Gener. Comput. Syst. 14, 231–242 (1998)

    Google Scholar 

  25. Warren, W.H.: Non-Euclidean navigation. J. Exp. Biol. 222 (2019). https://doi.org/10.1242/jeb.187971

  26. Wiener, J.M., et al.: Animal Navigation. A Synthesis, pp. 51–76. The MIT Press, Cambridge (2011)

    Google Scholar 

  27. Wilson, M.A., McNaughton, B.L.: Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerrit A. Ecke or Tristan Baumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mallot, H.A., Ecke, G.A., Baumann, T. (2020). Dual Population Coding for Path Planning in Graphs with Overlapping Place Representations. In: Šķilters, J., Newcombe, N., Uttal, D. (eds) Spatial Cognition XII. Spatial Cognition 2020. Lecture Notes in Computer Science(), vol 12162. Springer, Cham. https://doi.org/10.1007/978-3-030-57983-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57983-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57982-1

  • Online ISBN: 978-3-030-57983-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics