Skip to main content

A New Scheme for Essential Proteins Identification in Dynamic Weighted Protein-Protein Interaction Networks

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12239))

Included in the following conference series:

  • 1137 Accesses

Abstract

Predicting essential protein on the protein-protein interaction network is crucial for understanding the process of cellular organization and development. With the development of high-throughput proteomics technology, essential protein recognition has become a hot topic and focus of research, there are many computational methods for essential proteins detecting. However, these existing methods are mostly predicted in static PPI networks, ignoring the dynamics of the network. Meanwhile, existing methods identify essential proteins in unweighted networks, without considering the tightness and strength of the connections between network nodes, which lead to low accuracy of essential protein identification. Therefore, this paper presents a new essential proteins prediction scheme, called NTMB which integrates a variety of biological information including edge clustering coefficient, common neighbor similarity, Pearson Correlation Coefficient and Subcellular localization score. In order to evaluate the performance of our method NTMB, we conduct a series of experiments on the yeast PPI network and the experimental results shown that the proposed essential protein method NTMB can obtain better results in yeast PPI network than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Y., Xu, D.: Understanding protein dispensability through machine-learning analysis of high-throughput data. Bioinformatics 21(5), 575–581 (2005)

    Article  Google Scholar 

  2. Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Véronneau, S.: Functional profiling of the Saccharomyces Cerevisiae genome. Nature 418(6896), 387–391 (2002)

    Article  Google Scholar 

  3. Schulz, G.E., Schirmer, R.H.: Principles of protein structure. Springer Advanced Texts in Chemistry. Springer, Heidelberg, vol. 118(1), pp. 151–152 (1979)

    Google Scholar 

  4. Roemer, T., Jiang, B., Davison, J.: Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol. Microbiol. 50(1), 167–181 (2010)

    Article  Google Scholar 

  5. Hua, Y., Chen, B., Yuan, Y., Zhu, G., Ma, J.: An influence maximization algorithm based on the mixed importance of nodes. Comput. Mater. Continua 59(2), 517–531 (2019)

    Article  Google Scholar 

  6. Niu, B., Huang, Y.: An improved method for web text affective cognition computing based on knowledge graph. Comput. Mater. Continua 59(1), 1–14 (2019)

    Article  Google Scholar 

  7. Zhou, H., Sun, G., Fu, S., Jiang, W., Xue, J.: A scalable approach for fraud detection in online e-commerce transactions with big data analytics. Comput. Mater. Continua 60(1), 179–192 (2019)

    Article  Google Scholar 

  8. Kim, K.-B.: Web-based computational system for protein-protein interaction inference. J. Inf. Process. Syst. 8(3), 459–470 (2012)

    Article  Google Scholar 

  9. Jeong, H., Oltvai, Z.N., Barabasi, A.-L.: Prediction of protein essentiality based on genomic data. ComPlexUs 1(1), 19–28 (2003)

    Article  Google Scholar 

  10. Vallabhajosyula, R.R., Chakravarti, D., Lutfeali, S.: Identifying hubs in protein interaction networks. PLoS ONE 4(4), e5344 (2009)

    Article  Google Scholar 

  11. Joy, M.P., Brock, A., Ingber, D.E.: High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. 2005(2), 96 (2016)

    Article  Google Scholar 

  12. Wuchty, S., Stadler, P.F.: Centers of complex networks. J. Theor. Biol. 223(1), 45–53 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Estrada, E., Rodríguez-Velázquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 056103 (2005)

    Article  MathSciNet  Google Scholar 

  14. Stephenson, K., Zelen, M.: Rethinking centrality: methods and examples. Soc. Netw. 11(1), 1–37 (1989)

    Article  MathSciNet  Google Scholar 

  15. Wang, J., Li, M., Wang, H., Pan, Y.: Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(4), 1070–1080 (2012)

    Article  Google Scholar 

  16. Li, M., Wang, J., Chen, X., Wang, H., Pan, Y.: A local average connectivity-based method for identifying essential proteins from the network level. Comput. Biol. Chem. 35(3), 143–150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, W., Li, M., Wang, J.X.: Essential protein discovery based on network motif and gene ontology. In: IEEE International Conference on Bioinformatics and Biomedicine, Atlanta, pp. 470–475 (2011)

    Google Scholar 

  18. Pan, Y., Hu, S., Zhao, B.: Identification of essential protein based on functional modules and weighted protein-protein interaction networks. Int. J. u- and e- Serv. Sci. Technol. 9(8), 343–350 (2016)

    Google Scholar 

  19. Li, M., Zhang, H., Wang, J.X., Pan, Y.: A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Syst. Biol. 6(1), 15 (2012). https://doi.org/10.1186/1752-0509-6-15

    Article  Google Scholar 

  20. Peng, W., Wang, J.X., Wang, W.P.: Iteration method for predicting essential proteins based on orthology and protein-protein interaction networks. BMC Syst. Biol. 6(1), 87 (2012)

    Article  Google Scholar 

  21. Tang, X., Wang, J., Zhong, J.: Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinf. 11(2), 407–418 (2014)

    Article  Google Scholar 

  22. Peng, W., Wang, J., Cheng, Y., Lu, Y., Wu, F.: UDONC: an algorithm for identifying essential proteins based on protein domains and protein-protein interaction networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 12(2), 276–288 (2015)

    Article  Google Scholar 

  23. Lei, X.J., Wang, S.G., Wu, F.X.: Identification of essential proteins based on improved HITS algorithm. Genes 10(2), 177 (2019)

    Article  Google Scholar 

  24. Zhang, X., Xiao, W., Hu, X.: Predicting essential proteins by integrating orthology, gene expressions, and PPI networks. PLoS ONE 13(4), e0195410 (2018)

    Article  Google Scholar 

  25. Chao, Q., Sun, Y., Dong, Y.: A new method for identifying essential proteins based on network topology properties and protein complexes. PLoS ONE 11(8), e0161042 (2016)

    Article  Google Scholar 

  26. Xu, B., Li, K., Zheng, W.: Protein complexes identification based on go attributed network embedding. BMC Bioinform. 19(1), 535 (2019). https://doi.org/10.1186/s12859-018-2555-x

    Article  Google Scholar 

  27. Von, M.C., Krause, R., Snel, B.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887), 399–403 (2002)

    Article  Google Scholar 

  28. Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084), 631–636 (2006)

    Article  Google Scholar 

  29. Xenarios, I., Salwínski, L., Duan, X.J.: DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30(1), 303 (2002)

    Article  Google Scholar 

  30. Mewes, H.W., Frishman, D., Mayer, K.F., Münsterkötter, M., Noubibou, O.: MIPS: analysis and annotation of proteins from whole genomes in 2005. Nucleic Acids Res. 34, 169–172 (2006)

    Article  Google Scholar 

  31. Juvik, T.Y.R., Schroeder, M., Weng, S.: SGD: saccharomyces genome database. Nucleic Acids Res. 26(1), 73–79 (1998)

    Article  Google Scholar 

  32. Zhang, R., Lin, Y.: DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res. 37(Database issue), D455–D458 (2009)

    Google Scholar 

  33. Saccharomyces Genome Deletion Project. http://www.sequence.stanford.edu/group/

  34. Blake, J., Christie, K., Dolan, M.: Gene ontology consortium: going forward. Nucleic Acids Res. 43(Database issue), 1049–1056 (2015)

    Google Scholar 

  35. Binder, J.X., Pletscherfrankild, S., Tsafou, K.: COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database 2014 (2014)

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Chinese National Natural Science Foundation under Grant Nos. 61702441, 61772454, 61703362, 61602202, Natural Science Foundation of Jiangsu Province under contracts BK20170513, BK20160428, and the Blue Project of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, W., Ma, L., Tang, Y. (2020). A New Scheme for Essential Proteins Identification in Dynamic Weighted Protein-Protein Interaction Networks. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Lecture Notes in Computer Science(), vol 12239. Springer, Cham. https://doi.org/10.1007/978-3-030-57884-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57884-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57883-1

  • Online ISBN: 978-3-030-57884-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics