Skip to main content

Intelligent Wearable Sensor Band for Underground Working People

  • Chapter
  • First Online:
Further Advances in Internet of Things in Biomedical and Cyber Physical Systems

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 193))

  • 428 Accesses

Abstract

This paper presents an Intelligent wearable sensor band for underground working people. The security and soundness of laborers are significant for underground individuals. The proposed framework consolidates wearable sensors to quantify physiological and natural parameters. A passage is acquainted with giving information preparing, a neighborhood web server, and a cloud association. A wearable sensor on a laborer and natural sensor on a wanderer that can transmit the information to the client by means of a door for example server, gives offer notice and cautioning component for the clients. Live health examination taken for laborers who work in an underground like Tunnels, Shafts, etc., it has an Individual database of laborers and contrasts it and current essential tangible qualities separate to workplace information. Live update, will screen from the control room and it can direct the specialist if any medical problem occurs and furthermore can maintain a strategic distance from the undesirable passing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selkar, R.G., Thakare, M.: Brain tumor detection and segmentation by using thresholding and watershed algorithm. Int. J. Adv. Inf. Commun. Technol. 1, 321–324 (2014)

    Google Scholar 

  2. Alam, M.S., Rahman, M.M., Hossai, M.A.: Automatic human brain tumor detection in MRI image using template-based K means and improved fuzzy C means clustering algorithm. Big Data Cogn. Comput. 3(27) (2019)

    Google Scholar 

  3. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8, 275–283 (2004)

    Article  Google Scholar 

  4. Devkotaa, B., Alsadoona, A., Prasada, P.W.C., Singhb, A.K., Elchouemic, A.: Image segmentation for early stage brain tumor detection using mathematical morphological reconstruction. Procedia Comp. Sci. 125, 115–123 (2018)

    Google Scholar 

  5. Mathur, N., Meena, Y.K., Mathur, S., Mathur, D.: Detection of Brain Tumor in MRI Image Through Fuzzy-Based Approach in High-Resolution Neuroimaging-Basic Physical Principles and Clinical Applications. Rijeka, Croatia, InTech (2018)

    Google Scholar 

  6. Arzoo, M., Prof, A., Rathod, K.: K-means algorithm with different distance metrics in spatial data mining with uses of NetBeans IDE 8.2. Int. Res. J. Eng. Technol. 4, 2363–2368 (2017)

    Google Scholar 

  7. Karthik, R., Menaka, R.: A multi-scale approach for detection of ischemic stroke from brain MR images using discrete curvelet transformation. Measurement 100, 223–232 (2017)

    Article  Google Scholar 

  8. Wu, Y., Zhu, M., Li, D., Zhang, Y., Wang, Y.: Brain stroke localization by using microwave-based signal classification. In: IEEE International Conference on Electromagnetics in Advanced Applications, pp. 828–831 (2016)

    Google Scholar 

  9. Ay, H., Furie, K.L., Singhal, A., Smith, W.S., Sorensen, A.G., Koroshetz, W.J.: An evidence-based causative classification system for acute ischemic stroke. Ann. Neurol. 58(5), 688–697 (2005)

    Article  Google Scholar 

  10. Database, Brainweb: http://www.bic.mni.mcgill.ca/brainweb/. Accessed 10 Sept 2018

  11. Ramesh, G.P., Aravind, C.V., Rajparthiban, R., Soysa, N.: Body area network through wireless technology. Int. J. Comput. Sci. Eng. Commun. 2(1), 129–134 (2014)

    Google Scholar 

  12. Nithya, V., Ramesh, G.P.: Wireless EAR EEG signal analysis with stationary wavelet transform for co channel interference in schizophrenia diagnosis. In: Balas, V., Kumar, R., Srivastava, R. (eds.) Recent Trends and Advances in Artificial Intelligence and Internet of Things. Intelligent Systems Reference Library, vol 172. Springer (2020)

    Google Scholar 

  13. Fiebach, J.B., Schellinger, P.D., Geletneky, K., Wilde, P., Meyer, M., Hacke, W., Sartor, K.: MRI in acute subarachnoid haemorrhage; findings with a standardised stroke protocol. Neuroradiology 46(1), 44–48 (2004)

    Article  Google Scholar 

  14. Fiebach, J.B., Schellinger, P.D., Jansen, O., Meyer, M., Wilde, P., Bender, J., Hähnel, S.: CT and diffusion-weighted MR imaging in randomized order. Stroke 33(9), 2206–2210 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karthikeyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karthikeyan, S. et al. (2021). Intelligent Wearable Sensor Band for Underground Working People. In: Balas, V.E., Solanki, V.K., Kumar, R. (eds) Further Advances in Internet of Things in Biomedical and Cyber Physical Systems. Intelligent Systems Reference Library, vol 193. Springer, Cham. https://doi.org/10.1007/978-3-030-57835-0_2

Download citation

Publish with us

Policies and ethics