Skip to main content

Resources for Humans, Plants and Animals: Who Is the Ruler of the Driver? And: Can Resource Use Explain Everything?

  • Chapter
  • First Online:
Perspectives for Biodiversity and Ecosystems

Part of the book series: Environmental Challenges and Solutions ((ECAS))

  • 843 Accesses

Abstract

Resources represent capability, and enable processes such as growth, reproduction, social and cultural life. All processes of life are controlled by resources. Resources are stored in living and dead biomass and in the abiotic environment. Every ecosystem is characterized by input, internal storage, internal cycling, and output of resources.

Resources are used by the species of the ecosystem, including migrating species, humans, and invasive species as they arrive. Humans influence ecosystem functions in various ways, with differential effects on biomass, productivity and species diversity. In most cases this has consequences for species diversity, which is often decreasing, but—depending on the spatial scale—sometimes also increasing.

We ask the question “is it possible to estimate the effects of human exploitation of ecosystems?” Under changing conditions the ecosystem is adapting the resource use permanently by adjusting the combination of its features. Productivity is the driver of recent conditions and biomass is storage; the existence of each is a precondition for the other. Species diversity can increase by immigration and evolution and decrease by emigration and extinction.

Humans as ecosystem engineers are key species with respect to the quantity of resources used and rebound effects on food webs, species diversity and cultural attitudes.

We delineate and discuss the meaning of the Theory on Assembly Optimization (TAO), which we provide here. The sequence: resource existence, resource availability, resource use and optimization of the resource use, represents increasing complexity with a simultaneous decrease in our quantity of empirical evidence and understanding.

We assume that there is a general trend in the resource use by life on earth, which trends toward an optimal or most parsimonious pattern. In accordance with this concept, evolutionary, ecological and sociocultural processes influence the resource use and composition of the communities. Individuals, populations, assemblies and ecosystem properties are always composed and rearranged along changing conditions to an optimal use of resources.

Optimization of the resource use is an important principle controlling ecosystem functions—the ruler. Diversity, productivity and biomass are important drivers of the ecosystem. Changes in these properties reflect changes in the compartmentalisation and resource use of the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allesina S, Pascual M (2008) Network structure, predator–prey modules, and stability in large food webs. Theor Ecol 1:55–64

    Article  Google Scholar 

  • Amundson R (1994) Two concepts of constraint: adaptationism and the challenge from developmental biology. Philos Sci 61:556–578

    Article  Google Scholar 

  • Archer D (2010) The global carbon cycle. Princeton University Press, Princeton

    Book  Google Scholar 

  • Axinn WG, Yabiku ST (2001) Social change, the social organization of families, and fertility limitation. Am J Sociol 106(5):1219–1261

    Article  Google Scholar 

  • Baluska F, Gagliano M, Witzany G (eds) (2018) Memory and learning in plants. Springer, Cham

    Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci U S A 115(25):6506–6511. https://doi.org/10.1073/pnas.1711842115

    Article  CAS  Google Scholar 

  • Battiti R, Mauro B, Franco M (2008) Reactive search and intelligent optimization. Springer, Berlin, 196p

    Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464(7288):579–582

    Article  CAS  Google Scholar 

  • Bongaarts J (1996) Population pressure and the food supply system in the developing world. Popul Dev Rev 22(3):483–503

    Article  Google Scholar 

  • Boserup E (1981) Population and technological change: a study of long term trends. University of Chicago Press, Chicago, 255p

    Google Scholar 

  • Bourassa SC (1988) Toward a theory of landscape aesthetics. Landsc Urban Plan 15(3–4):241–252

    Article  Google Scholar 

  • Braakhekke WG, Hooftman DAP (1999) The resource balance hypothesis of plant species diversity in Grassland. J Veg Sci 10(2):187–200

    Article  Google Scholar 

  • Bragina A, Berg C, Berg G (2015) The core microbiome bonds the Alpine bog vegetation to a transkingdom metacommunity. Mol Ecol 24:4795–4807

    Article  Google Scholar 

  • Braun-Blanquet J (1928) Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer, Berlin, 330p

    Google Scholar 

  • Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217

    Article  CAS  Google Scholar 

  • Cardinale BJ, Gross K, Fritschie K, Flombaum P, Fox JW, van Rixen C, Ruijven J, Reich PB, Scherer-Lorenzen M, Wilsey BJ (2013) Species diversity simultaneously enhances the production and stability of community biomass, but the effects are independent. Ecology 94(8):1697–1707

    Article  Google Scholar 

  • Case T (1983) Niche overlapp and the assembly of island lizard communities. Oikos 41(3):427–433

    Article  Google Scholar 

  • Chiarucci A (2007) To sample or not to sample? That is the question . . . for the vegetation scientist. Folia Geobot 42(2):209–216

    Article  Google Scholar 

  • Christ C, Hillel O, Matus S, Sweeting J (2003) Tourism and biodiversity. Conservation International, Washington

    Google Scholar 

  • Chytrý M, Dražil T, Hájek M, Kalníková V, Preislerová Z, Šibík J, Ujházy K, Axmanová I, Bernátová D, Blanár D, Dančák M, Dřevojan P, Fajmon K, Galvánek D, Hájková P, Herben T, Hrivnák R, Janeček Š, Janišová M, Jiráská Š, Kliment J, Kochjarová J, Lepš J, Leskovjanská A, Merunková K, Mládek J, Slezák M, Šeffer J, Šefferová V, Škodová I, Uhlířová J, Ujházyová M, Vymazalová M (2015) The most species-rich ecosystems in the Czech Republic and Slovakia (with new world records). Preslia 87:217–278

    Google Scholar 

  • CIA (ed) (2019) The CIA World Factbook. https://www.cia.gov/library/publications/the-world-factbook; assessed 7/2019

  • Clements FE (1936) Nature and structure of the climax. J Ecol 24:253–584

    Article  Google Scholar 

  • Clements FE (1916) Plant succession. Carnegie Inst. Washington Publ. 242, Washington

    Google Scholar 

  • Clutton-Brock T (2002) Breeding together: Kin selection and mutualism in cooperative vertebrates. Science 296:69–72

    Article  CAS  Google Scholar 

  • Cody ML (1974) Optimization in Ecology. Science 183(4130):1156–1164

    Article  CAS  Google Scholar 

  • Cody ML, Diamond JM (eds) (1975) Ecology and evolution of communities. Harvard University Press, Cambridge, 560p

    Google Scholar 

  • Craven D, Isbell F, Manning P, Connolly J, Bruelheide H, Ebeling A, Roscher C, van Ruijven J, Weigelt A, Wilsey B, Beierkuhnlein C, de Luca E, Griffin JN, Hautier Y, Hector A, Jentsch A, Kreyling J, Lanta V, Loreau M, Meyer ST, Mori AS, Naeem S, Palmborg C, Polley HW, Reich PB, Schmid B, Siebenkäs A, Seabloom E, Thakur MP, Tilman D, Vogel A, Eisenhauer N (2016) Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philos Trans Royal Soc B 371:20150277

    Article  Google Scholar 

  • Darwin C (1839) Journal of researches into the geology and natural history of the various countries visited by H. M. S. Beagle, under the command of Captain Fitzroy, R.N. from 1832 to 1836. Colburn, London, 582p

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or, The preservation of favoured races in the struggle for life. John Murray, London, 558p

    Book  Google Scholar 

  • Davis MA, Thompson K, Grime JP (2005) Invasibility: the local mechanism driving community assembly and species diversity. Ecography 28(5):696–704

    Article  Google Scholar 

  • de Haan L, Ferreira A (2006) Extreme value theory: an introduction. Springer, Dordrecht

    Book  Google Scholar 

  • DeAngelis DL, Waterhouse JC (1987) Equilibrium and nonequilibrium concepts in ecological models. Ecol Monogr 57(1):1–21

    Article  Google Scholar 

  • Dewar RC (2010) Maximum entropy production and plant optimization theories. Philos Trans Royal Soc B 365(1545):1429–1435

    Article  CAS  Google Scholar 

  • Diaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Article  Google Scholar 

  • Dixit AK (1990) Optimization in economic theory, 2nd edn. Oxford University Press, Oxford, 188p

    Google Scholar 

  • Earth Observatory (2019) Carbon cycle. https://earthobservatory.nasa.gov/features/CarbonCycle/carbon_cycle4.html. Accessed 10/2019

  • Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen, 6 Aufl. Stuttgart, 1357p

    Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London, 196p

    Book  Google Scholar 

  • Eriksson O (1993) The species-pool hypothesis and ecosystem diversity. Oikos 68:371–374

    Article  Google Scholar 

  • Eshel I, Feldman M (2001) Optimality and evolutionary stability under short-term and long-term selection. In: Orzack SH, Sober E (eds) Adaptationism and optimality. Cambridge University Press, Cambridge, pp 161–190

    Chapter  Google Scholar 

  • Esser G, Lieth HFH, Scurlock JMO, Olson RJ (2000) Osnabrück net primary productivity data set. Ecology 81:1177

    Google Scholar 

  • FAO (ed) (2018) The state of world fisheries and aquaculture in brief. CA0191EN/1/07.18

    Google Scholar 

  • Farrior CE, Tilman D, Dybzinski R, Reich PB, Levin SA, Pacala SW (2013) Resource limitation in a competitive context determines complex plant responses to experimental resource additions. Ecology 94(11):2505–2517

    Article  Google Scholar 

  • Ferriere R, Legendre S (2013) Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Philos Trans Royal Soc B 368:20120081

    Article  Google Scholar 

  • Feßel C, Meier IC, Leuschner C (2016) Relationship between species diversity, biomass and light transmittance in temperate semi-natural grasslands: is productivity enhanced by complimentary light capture? J Veg Sci 27:144–155

    Article  Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York, 620p

    Google Scholar 

  • Fridley JD (2001) The influence of species diversity on ecosystem productivity: how, where, why? Oikos 93:514–526

    Article  Google Scholar 

  • Fujii K (2014) Soil acidification and adaptations of plants and microorganisms in Bornean tropical forests. Ecol Res 29(3):371–381

    Article  CAS  Google Scholar 

  • Fukami T (2010) Community assembly dynamics in space. In: Verhoef HA, Morin PJ (eds) Community ecology: processes, models, and applications. Oxford University Press, Oxford, pp 45–54

    Google Scholar 

  • Fukami T, Morin PJ (2003) Productivity-species diversity relationships depend on the history of community assembly. Nature 424:423–426

    Article  CAS  Google Scholar 

  • Fukami T, Wardle DA, Bellingham PJ, Mulder CPH, Towns DR, Yeates GW, Bonner KI, Durrett MS, Grant-Hoffman MN, Williamson WM (2006) Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol Lett 9:1299–1307

    Article  Google Scholar 

  • Gagliano M, Renton M, Depczynski M, Mancuso S (2014) Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia 175:63

    Article  Google Scholar 

  • Gleason HA (1926) The individualistic concept of the plant association. Bull Torrey Bot Club 53:7–26

    Article  Google Scholar 

  • Goh CK, Tan KC (2009) Evolutionary multi-objective optimization in uncertain environments: issues and algorithms. Springer, Berlin

    Google Scholar 

  • Golley FB (1994) A history of the ecosystem concept in ecology: more than the sum of the parts. Yale University Press, New Haven

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The Sprandrels of San Marco and the Panglossian Paradigm: a critique of the adaptionist programme. Proc Royal Soc B 205:581–598

    CAS  Google Scholar 

  • Grace JB, Anderson M, Smith MD, Seabloom E, Andelman SJ, Meche G, Weiher E, Allain LK, Jutila H, Sankaran M, Knops J, Ritchie M, Willig MR (2007) Does species diversity limit productivity in natural grassland communities? Ecol Lett 10:680–689

    Article  Google Scholar 

  • Grant K, Kreyling J, Heilmeier H, Beierkuhnlein C, Jentsch A (2014) Extreme weather events and plant-plant interactions: shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall. Ecol Res 29:991–1001

    Article  Google Scholar 

  • Grime P, Pierce S (2012) The evolutionary strategies that shape ecosystems. Wiley, Oxford

    Book  Google Scholar 

  • Gruber N, Sarmiento JL (2002) Large-scale biogeochemical/physical interactions in elemental cycles. In: Robinson AR, JJ MC, Rothschild BJ (eds) The Sea: biological-physical interactions in the oceans, vol 12. Wiley, New York, pp 337–399

    Google Scholar 

  • Gruber N, Gloor M, Mikaloff Fletcher SE, Doney SC, Dutkiewicz S, Follows MJ, Gerber M, Jacobson AR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Müller SA, Sarmiento JL, Takanashi T (2009) Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem Cycles 23:GB1005. https://doi.org/10.1029/2008GB003349

    Article  CAS  Google Scholar 

  • Guo Q (2007) The diversity-biomass-productivity relationships in grassland management and restoration. Basic Appl Ecol 8:199–208

    Article  Google Scholar 

  • Harris DB (2009) Review of negative effects of introduced rodents on small mammals on islands. Biol Invasions 11:1611–1630

    Article  Google Scholar 

  • Hartmann M (1933) Die methodologischen Grundlagen der Biologie. Ann Philos 11:235–261

    Google Scholar 

  • Heard SB, Remer LC (2008) Travel costs, oviposition behaviour and the dynamics of insect-plant systems. Theor Ecol 1(3):179–188

    Article  Google Scholar 

  • Heylighen F (1992a) Evolution, selfishness and cooperation. J Ideas 2:70–76

    Google Scholar 

  • Heylighen F (1992b) Selfish memes and the evolution of cooperation. J Ideas 2:77–84

    Google Scholar 

  • Hilton GM, Cuthbert RJ (2010) The catastrophic impact of invasive mammalian predators on birds of the UK Overseas Territories: a review and synthesis. Ibis 152:443–458

    Article  Google Scholar 

  • Hobohm C (2016) Die Artenzusammensetzung von Pflanzengesellschaften unter besonderer Berücksichtigung interspezifischer Wechselwirkungen und extremer Ereignisse. Ber RTG 28:111–123

    Google Scholar 

  • Holmes TJ, Schmitz JA (2010) Competition and productivity: a review of evidence. Federal Reserve Bank of Minneapolis Research Department Staff Report 439:1–40

    Google Scholar 

  • Homeier J, Breckle S-W, Günter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42(2):140–148

    Article  Google Scholar 

  • Hubbell S (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hughlett TM (2016) Sensitivity of the younger Dryas climate to changes in freshwater, orbital, and greenhouse gas forcing in comprehensive climate modells. Dissertation University of Texas Arlington, 229p

    Google Scholar 

  • Hulvey KB, Aigner PA (2014) Using filter-based community assembly models to improve restoration outcomes. J Appl Ecol 51(4):997–1005

    Article  Google Scholar 

  • Humboldt A (1806) Ideen zu einer Physiognomik der Gewächse. Cotta-Verlag, Tuebingen

    Google Scholar 

  • Hussien WA, Memon FA, Savic DA (2017) An integrated model to evaluate water-energy-food nexus at a household scale. Environ Model Softw 93:366–380

    Article  Google Scholar 

  • Huston MA (1994) Biological diversity: The coexistence of species on changing landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Inouye BD (2001) Response surface experimental designs for investigating interspecific competition. Ecology 82(10):2969–2706

    Article  Google Scholar 

  • International Resource Panel (ed) (2017) Assessing global resource use: a systems approach to resource efficiency and pollution reduction. UNESCO, Nairobi

    Google Scholar 

  • Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci 110(29):11911–11916

    Article  CAS  Google Scholar 

  • James JJ, Tiller RL, Richards JH (2005) Multiple resources limit plant growth and function in a saline-alkaline desert community. J Ecol 93:113–126

    Article  CAS  Google Scholar 

  • Jolly CL, Torrey BB (eds) (1993) Population and land use in developing countries: report of a workshop. National Academy Press, Washington, DC, 159p

    Google Scholar 

  • Jones HP (2010) Prognosis for ecosystem recovery following rodent eradication and seabird restoration in an island archipelago. Ecol Appl 20:1204–1216

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Katz RW, Brush GS, Parlange MB (2005) Statistics of extremes: modelling ecological disturbances. Ecology 86(5):1124–1134

    Article  Google Scholar 

  • Keddy PA (2001) Competition, 2nd edn. Kluwer, Dordrecht

    Book  Google Scholar 

  • Keeling HC, Phillips OL (2007) The global relationship between forest productivity and biomass. Glob Ecol Biogeogr 16:618–631

    Article  Google Scholar 

  • Keith H, Mackey BG, Lindenmayer DB (2009) Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc Natl Acad Sci U S A 106:11635–11640

    Article  CAS  Google Scholar 

  • Kepfer-Rojas S, Darmgaard C, Riis-Nielsen T, Kappel Schmidt I (2017) Interactive effects of land-use history, tree encroachment and distance to edge on species richness in an unmanaged heathland. Appl Veg Sci 20:74–83

    Article  Google Scholar 

  • Keppel G, Buckley YM, Possingham HP (2010) Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific. J Ecol 98:87–95

    Article  Google Scholar 

  • Kratochwil A, Krausch S (2016) Bee-plant networks: structure, dynamics and the metacommunity concept. Ber RTG 28:23–40

    Google Scholar 

  • Krausmann F, Gingrich S, Eisenmenger N, Erb K-H, Haberl H, Fischer-Kowalski M (2009) Growth in global materials use, GDP and population during the 20th century. Ecol Econ 68(10):2696–2705

    Article  Google Scholar 

  • Kricher J (2009) The balance of nature: ecology’s enduring myth. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Kurian M (2017) The water-energy-food nexus- tradeoffs, thresholds and transdisciplinary approaches to sustainable development. J Environ Sci Policy 68:97–106

    Article  Google Scholar 

  • Lal R (2008) Sequestration of atmospheric CO2 in global carbon pools. Energy Environ Sci 1:86–100

    Article  CAS  Google Scholar 

  • Lebrija-Trejos E, Pérez-García EA, Meave JA, Bongers F, Poorter L (2010) Functional traits and environmental filtering drive community assembly in a species rich tropical system. Ecology 91:386–398

    Article  Google Scholar 

  • Lerch G (1991) Pflanzenökologie. Akademie Verlag, Berlin

    Book  Google Scholar 

  • Li Y, Zhao M, Motesharrei S, Mu Q, Kalnay E, Li S (2015) Local cooling and warming effects of forest based on satellite observations. Nat Commun 6. doi: https://doi.org/10.1038/ncomms7603., https://www.nature.com/articles/ncomms7603. Accessed 2 Feb 2017

  • Lindemann RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418

    Article  Google Scholar 

  • Lohbeck M, Poorter L, Martinez-Ramos M, Bongers F (2015) Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96(5):1242–1252

    Article  Google Scholar 

  • MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Princeton University Press, Princeton, NJ

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, 203p

    Google Scholar 

  • Maynard Smith J (1978) Optimization theory in evolution. Annu Rev Ecol Syst 9:31–56

    Article  Google Scholar 

  • McMurtry J (1991) How competition goes wrong. J Appl Philos 8(2):200–210

    Article  Google Scholar 

  • Meeker DO, Merkel DL (1984) Climax theories and a recommendation for vegetation classification: a viewpoint. J Range Manag 37(5):427–430

    Article  Google Scholar 

  • Meszena G, Kisdi E, Dieckmann U, Geritz AH, Metz JAJ (2001) Evolutionary optimisation models and matrix games in the unified perspective of adaptive dynamics. Selection 2(1–2):193–210

    Google Scholar 

  • Miller TE, Burns JH, Munguia P, Walters EL, Kneitel JM, Richards PM, Mouquet N, Buckley HL (2005) A critical review of twenty years use of the Resource-Ratio Theory. Am Nat 165(4):439–484

    Article  Google Scholar 

  • Mitsch WJ (2012) What is ecological engineering? Ecol Eng 45:5–12

    Article  Google Scholar 

  • Möbius K (1877) Die Auster und die Austernwirthschaft. Wiegandt, Hemple and Parey, Berlin

    Google Scholar 

  • Morin X, Fahse L, de Mazancourt C, Scherer-Lorenzen M, Bugmann H (2014) Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol Lett 17:1526–1535

    Article  Google Scholar 

  • Morison JIL, Piedade MTF, Müller E, Long SP, Junk WJ, Jones MB (2000) Very high productivity of the C4 aquatic grass Echinochloa polystachya in the Amazon floodplain confirmed by net ecosystem CO2 flux measurements. Oecologia 125(3):400–411

    Article  CAS  Google Scholar 

  • Müller-Dombois D, Canfield JE, Holt AR, Buelow GP (1983) Tree-group death in North American and Hawaiian forests: a pathological problem or a new problem for vegetation ecology? Phytocoenologia 11(1):117–137

    Article  Google Scholar 

  • Myers JA, Harms KE (2009) Seed arrival, ecological filters, and plant species richness: a meta-analysis. Ecol Lett 12:1250–1260

    Article  Google Scholar 

  • Myers JA, Harms KE (2011) Seed arrival and ecological filters interact to assemble high-diversity ecosystems. Ecology 9(3):676–686

    Article  Google Scholar 

  • Negoita L, Fridley JD, Lomolino MV, Mittelhauser G, Craine JM (2016) Isolation-driven functional assembly of ecosystems on islands. Ecography 39:1066–1077

    Article  Google Scholar 

  • Neuenkamp L, Lewis RJ, Koorem K, Zobel K, Zobel M (2016) Changes in dispersal and light capturing traits explain post-abandonment community change in semi-natural grasslands. J Veg Sci 27(6):1222–1232

    Article  Google Scholar 

  • Newth D, Obersteiner M, Cai Y, Baynes T, West J, Havlik P (2017) Assessing global resource use and greenhouse emissions to 2050, with ambitious resource efficiency and climate mitigation policies. J Clean Prod 144:403–414

    Article  Google Scholar 

  • Nowak MA, Sigmund K (2004) Evolutionary dynamics of biological games. Science 303:793–799

    Article  CAS  Google Scholar 

  • Odum EP (1977) The emergence of ecology as a new integrative discipline. Science 195:1289–1293

    Article  CAS  Google Scholar 

  • Odum EP (1998) Ökologie. Grundlagen – Standorte – Anwendungen, 3rd edn. Thieme, Stuttgart

    Google Scholar 

  • Odum EP, Barrett GW (2005) Fundamentals in ecology, 5th edn. Brooks Cole, Belmont

    Google Scholar 

  • Orzack SH, Sober E (2001) Adaptationism and optimality. Cambridge University Press, New York

    Book  Google Scholar 

  • Palmer MW, White PS (1994) On the existence of ecological communities. J Veg Sci 5:279–282

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013) The structure, distribution, and biomass of the world’s forests. Ann Rev Ecol Evol Syst 2013:593–622

    Article  Google Scholar 

  • Parker GA, Maynard Smith J (1990) Optimality theory in evolutionary biology. Nature 348:27–33

    Article  Google Scholar 

  • Pärtel M (2002) Local plant diversity patterns and evolutionary history at local scale. Ecology 83:2361–2366

    Article  Google Scholar 

  • Petersen J, Kers B, Stock M (2014) TMAP-Typology of coastal vegetation in the Wadden Sea area. Wadden Sea Ecosyst 32:1–86

    Google Scholar 

  • Piedade MTF, Long SP, Junk WJ (1994) Leaf and canopy photosynthesis CO2 uptake of a stand of Echinochloa polystachya on the Amazon floodplain. Funct Ecol 11:60–65

    Article  Google Scholar 

  • Popkin G (2019) The forest question: trees are supposed to slow global warming, but growing evidence suggests they might not always be climate saviours. Nature 565:280–282

    Article  CAS  Google Scholar 

  • Pott R (1996) Biotoptypen: schützenswerte Lebensräume Deutschlands und angrenzender Regionen. Ulmer, Stuttgart

    Google Scholar 

  • Pyšek P, Pergl J, Essl F, Lenzner B, Dawson W, Kreft H, Weigelt P, Winter M, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cárdenas D, Cárdenas-Toro J, Castańo N, Chacón E, Chatelain C, Dullinger S, Ebel AL, Figueiredo E, Fuentes N, Genovesi P, Groom QJ, Henderson L, Inderjit KA, Masciadri S, Maurel N, Meerman J, Morozova O, Moser D, Nickrent D, Nowak PM, Pagad S, Patzelt A, Pelser PB, Seebens H, Shu W, Thomas J, Velayos M, Weber E, Wieringa JJ, Baptiste MP, van Kleunen M (2017) Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89:203–274

    Article  Google Scholar 

  • Reiss MJ (1987) Optimization theory in behavioural ecology. J Biol Educ 21(4):241–247

    Article  Google Scholar 

  • Reluga TC, Shaw AK (2015) Resource distribution drives the adaption of migratory, partially migratory, or residential strategies. Theor Ecol 8(4):437–447

    Article  Google Scholar 

  • Rice CW (2002) Storing carbon in soil: Why and how? Geotimes. http://www.geotimes.org/jan02/feature_carbon.html. Assessed 1/2019

  • Richardson RC (1994) Optimization in evolutionary ecology. Proceedings of the Biennial Meeting of the Philosophy of Science Foundation 1:13–21

    Google Scholar 

  • Ricklefs RE, Miller GL (2000) Ecology, 4th edn. Freeman, New York

    Google Scholar 

  • Ritterskamp D, Feenders C, Bearup D, Blasius B (2016) Evolutionary food web models: effects on an additional resource. Theor Ecol 9(4):501–512

    Article  Google Scholar 

  • Rosenzweig ML (1971) Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171:385–387

    Article  CAS  Google Scholar 

  • Saleem M (2015) Microbiome community ecology. Springer, Dordrecht

    Book  Google Scholar 

  • Sayed AH (2014) Adaptation, learning and optimization over networks. Found Trends Mach Learn 7:311–801

    Article  Google Scholar 

  • Schulze E-D, Mooney HA (eds) (1993) Biodiversity and ecosystem function. Springer, New York.

    Google Scholar 

  • Shanafelt DW, Dieckmann U, Jonas M, Franklin O, Loreau M, Perrings C (2015) Species diversity, productivity, and the spatial insurance hypothesis revised. J Theor Biol 380:426–435

    Article  Google Scholar 

  • Silva Pedro M, Rammer W, Seidl R (2017) Disentangling the effects of compositional and structural diversity on forest productivity. J Veg Sci 28:649–658

    Article  Google Scholar 

  • Simová I, Li YM, Storch D (2013) Relationship between species richness and productivity in plants: the role of sampling effect, heterogeneity and species pool. J Ecol 101:161–170

    Article  Google Scholar 

  • Singh JS, Yadava PS (2014) NPP Grassland: Kurukshetra, India (1970-1971) R1. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN. doi: https://doi.org/10.3334/ORNLDAAC/193. Accessed 24 Mar 2017

  • Sprengel C (1828) Von den Substanzen der Ackerkrume und des Untergrundes. Journal für techische und oekonomische Chemie 2, 423–474, 3, 42–99, 313–352, and 397–421

    Google Scholar 

  • Stachowicz JJ (2001) Mutualism, facilitation, and the structure of ecological communities: positive interactions play a critical, but underappreciated, role in ecological communities by reducing physical or biotic stresses in existing habitats and by creating new habitats on which many species depend. Bioscience 51(3):235–246

    Article  Google Scholar 

  • Stohlgren TJ (2007) Measuring plant diversity. Lessons from the field. Oxford University Press, Oxford

    Google Scholar 

  • Svenning J-C, Normand S, Skov F (2009) Plio-Pleistocene climate change and geographic heterogeneity in plant-diversity relationships. Ecography 32:13–21

    Article  Google Scholar 

  • Tansley AG (1920) The classification of vegetation and the concept of development. J Ecol 8:118–149

    Article  Google Scholar 

  • Terborgh J (1992) Diversity and the tropical rain forest. Palgrave Macmillan, New York

    Google Scholar 

  • Thienemann A (1939) Grundzüge einer allgemeinen Ökologie. Archive für Hydrobiologie 35:267–285

    Google Scholar 

  • Thienemann A (1956) Leben und Umwelt. Vom Gesamthaushalt der Natur. Rohwolt, Hamburg

    Google Scholar 

  • Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci U S A 101(30):10854–10861

    Article  CAS  Google Scholar 

  • Tilman D (1980) A graphical-mechanistic approach to competition and predation. Am Nat 116:362–393

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton Monographs in Population Biology 17. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D (1985) The resource-ratio hypothesis of plant succession. Am Nat 125:827–852

    Article  Google Scholar 

  • Townsend CR, Harper JL, Begon ME (2003) Ökologie, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Trepl L (2005) Allgemeine Ökologie, Bd. 1: Organismus und Umwelt. Lang, Frankfurt am Main et al

    Google Scholar 

  • Uggla Y (2010) What is this thing called 'natural'? The nature-culture divide in climate change and biodiversity policy. J Pol Eco 17:79–91

    Google Scholar 

  • van der Ploeg RR, Böhm W, Kirkham MB (1999) On the origin of the theory of mineral nutrition of plants and the Law of the Minimum. Soil Sci Soc Am J 63:1055–1062

    Article  Google Scholar 

  • Van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cárdenas D, Cárdenas-Toro J, Castaño N, Chacón E, Chatelain C, Ebel AL, Figueiredo E, Fuentes N, Groom QJ, Henderson L, Inderjit KA, Masciadri S, Meerman J, Morozova O, Moser D, Nickrent DL, Patzelt A, Pelser PB, Baptiste MP, Poopath M, Schulze M, Seebens H, Shu W, Thomas J, Velayos M, Wieringa JJ, Pyšek P (2015) Global exchange and accumulation of non-native plants. Nature 525:100–103

    Article  CAS  Google Scholar 

  • van Ruijven J, Berendse F (2005) Diversity-productivity relationships: initial effects, long-term patterns, and underlying mechanisms. Proc Natl Acad Sci U S A 18(102/3):695–700

    Article  CAS  Google Scholar 

  • Verhoef HA, Morin PJ (eds) (2010) Community ecology: processes, models, and applications. Oxford University Press, Oxford

    Google Scholar 

  • Wacker L, Baudois O, Eichenberger-Glinz S, Schmid B (2009) Effects of plant species richness on stand structure and productivity. J Plant Ecol 2(2):95–106

    Article  Google Scholar 

  • Walters CJ, Hilborn R (1978) Ecological optimization and adaptive management. Ann Rev Ecol Syst 9:157–188

    Article  Google Scholar 

  • Went FW (1973) Competition among plants. Proc Natl Acad Sci U S A 70(2):585–590

    Article  CAS  Google Scholar 

  • Wheeler JA, Schnider F, Sedlacek J, Cortés AJ, Wipf S, Hoch G, Rixen C (2015) With a little help from my friends: community facilitation increases performance in the dwarf shrub Salix herbacea. Basic Appl Ecol 15(4):305–315

    Google Scholar 

  • Whittaker RH (1953) A consideration of climax theory: the climax as a population and pattern. Ecol Monogr 23:41–78

    Article  Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography. Ecology, evolution and conservation. Oxford University Press, Oxford

    Google Scholar 

  • Wiens JJ, Donoghue J (2004) Historical biogeography, ecology and species richness. Trend Ecol Evol 19(12):639–644

    Article  Google Scholar 

  • Wilkins JF, Godfrey-Smith P (2009) Adaptationism and the adaptive landscape. Biol Philos 24:199–214

    Article  Google Scholar 

  • Wilson JB (2011) The twelve theories of co-existence in ecosystems: the doubtful, the important and the unexplored. J Veg Sci 22:184–195

    Article  Google Scholar 

  • Wilson JB, Agnew ADQ (1992) Positive-feedback switches in ecosystems. Adv Ecol Res 23:263–336

    Article  Google Scholar 

  • Wilson JB, Peet RK, Dengler J, Pärtel M (2012) Plant species richness: the world records. J Veg Sci 23:796–802

    Article  Google Scholar 

  • Wittig R, Niekisch M (2014) Biodiversität: Grundlagen, Gefährdung, Schutz. Springer Spektrum, Berlin

    Book  Google Scholar 

  • World Meteorological Organization (2018) IPCC 2018: summary for policymakers. Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva, Switzerland, 32p

    Google Scholar 

  • Zachow C, Berg C, Müller H, Monk J, Berg G (2016) Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens. J Biotechnol 235:162–170

    Article  CAS  Google Scholar 

  • Zimmermann C (2007) Ambiguous, circular and polysemous: students’ definitions of the “balance of nature” metophor. Public Underst Sci 16(4):393–406

    Article  Google Scholar 

  • Zobel M (2016) The species pool concept as a framework for studying patterns of plant diversity. J Veg Sci 27:8–18

    Article  Google Scholar 

  • Zomer RJ, Bossio DA, Sommer R, Verchot LV (2017) Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Sci Rep 7, 15554. https://doi.org/10.1038/s41598-017-15794-8

Download references

Acknowledgements

This is the preliminary result of a long-lasting discussion with many colleagues. We want to thank Monika Janišová, Alessandro Chiarucci, Marinus Werger, Victor Westhoff (†) and Martin Zobel for criticism, fruitful discussion, remarks on a former version of the manuscript, for recommendations and additional information and ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Hobohm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hobohm, C., Vanderplank, S.E. (2021). Resources for Humans, Plants and Animals: Who Is the Ruler of the Driver? And: Can Resource Use Explain Everything?. In: Hobohm, C. (eds) Perspectives for Biodiversity and Ecosystems. Environmental Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-57710-0_4

Download citation

Publish with us

Policies and ethics