Skip to main content

S-adic Sequences: A Bridge Between Dynamics, Arithmetic, and Geometry

  • Chapter
  • First Online:
Substitution and Tiling Dynamics: Introduction to Self-inducing Structures

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2273))

Abstract

A Sturmian sequence is an infinite nonperiodic string over two letters with minimal subword complexity. In two papers, the first written by Morse and Hedlund in 1940 and the second by Coven and Hedlund in 1973, a surprising correspondence was established between Sturmian sequences on one side and rotations by an irrational number on the unit circle on the other. In 1991 Arnoux and Rauzy observed that an induction process (invented by Rauzy in the late 1970s), related with the classical continued fraction algorithm, can be used to give a very elegant proof of this correspondence. This process, known as the Rauzy induction, extends naturally to interval exchange transformations (this is the setting in which it was first formalized). It has been conjectured since the early 1990s that these correspondences carry over to rotations on higher dimensional tori, generalized continued fraction algorithms, and so-called S-adic sequences generated by substitutions. The idea of working towards such a generalization is known as Rauzy’s program. Recently Berthé, Steiner, and Thuswaldner made some progress on Rauzy’s program and were indeed able to set up the conjectured generalization of the above correspondences. Using a generalization of Rauzy’s induction process in which generalized continued fraction algorithms show up, they proved that under certain natural conditions an S-adic sequence gives rise to a dynamical system which is measurably conjugate to a rotation on a higher dimensional torus. Moreover, they established a metric theory which shows that counterexamples like the one constructed in 2000 by Cassaigne, Ferenczi, and Zamboni are rare. It is the aim of the present chapter to survey all these ideas and results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This implies that u and v have Σx and Σy in their orbit where x and y are the two limit sequences of σ. This interesting fact, which is not needed in this proof, should be proved by the reader.

  2. 2.

    We could also have started with writing out 1 and going to the right from the origin. This would have produced the second limit sequence of (σ) which coincides with w save for the first two letters.

  3. 3.

    A sequence is called linearly recurrent if there is a constant K such that each of its factors u occurs infinitely often in the sequence with gaps bounded by K|u|.

  4. 4.

    A sequence is called uniformly recurrent if each of its factors occurs infinitely often in the sequence with bounded gaps.

  5. 5.

    If we impose the additional property of primitivity on the coding sequence of a sequence \(w\in \mathcal {A}^{\mathbb {N}}\) it turns out that X w depends only on the directive sequence σ defining the S-adic sequence w and we have X σ = X w. This will be worked out precisely in Sect. 3.5.

  6. 6.

    Only the first letter a n in the argument of σ [0,n) is relevant for the limit. However, since we use the topology on \(\mathcal {A}^{\mathbb {N}}\) and \(\sigma _{[0,n)}(a_{n})\not \in \mathcal {A}^{\mathbb {N}}\) we have to write σ [0,n)(a na n…).

  7. 7.

    In [111] a space of tilings is equipped with a topology by saying that two tilings are close to each other if their tiles are close to each other in Hausdorff metric inside a large ball around the origin. Although \(\mathcal {C}_{\mathbf {v}}\) and \(\mathcal {C}^{(n_k)}_{\mathbf {v}}\) are no tilings, an analogous topology can be used here: \(\mathcal {C}_{\mathbf {v}}\) and are said to be close to each other if Γ(v) and \(\varGamma ({\mathbf {v}}^{(n_k)})-{\mathbf {y}}_k\) coincide inside a large ball B around the origin and the tiles associated to an element of [y, i] ∈ Γ(v) ∩ B in each of these two collections are close to each other in Hausdorff metric.

  8. 8.

    We note that in [48] the dual \(E_1^*(\sigma )\) is defined using suffixes of the images of σ instead of prefixes. Nevertheless, this difference does not change the behavior of \(E_1^*(\sigma )\) significantly and in Fig. 3.19 we get the same image as the authors obtained in [48, Figure 1].

  9. 9.

    Note that there are two kinds of shifts: the one just defined acts on the sequence of substitutions \(S^{\mathbb {N}}\), the other one (the S-adic shift) acts on the set of sequences X σ which is defined in terms of a single sequence of substitutions \({\boldsymbol {\sigma }}\in S^{\mathbb {N}}\). It should cause no confusion that both of these shift mappings are denoted by Σ.

  10. 10.

    Not to be confused with the level n subtiles introduced in Sect. 3.7.1.

  11. 11.

    Here ∥⋅∥2 is the operator norm w.r.t. the Euclidean norm on \(\mathbb {R}^d\).

References

  1. B. Adamczewski, Balances for fixed points of primitive substitutions. Theor. Comput. Sci. 307(1), 47–75 (2003). Words

    Google Scholar 

  2. S. Akiyama, Self affine tilings and Pisot numeration systems, in Number Theory and Its Applications, ed. by K. Győry, S. Kanemitsu (Kluwer, Dordrecht, 1999), pp. 1–17

    Google Scholar 

  3. S. Akiyama, On the boundary of self affine tilings generated by Pisot numbers. J. Math. Soc. Japan 54(2), 283–308 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Akiyama, M. Barge, V. Berthé, J.Y. Lee, A. Siegel, On the Pisot substitution conjecture, in Mathematics of Aperiodic Order. Progr. Math., vol. 309 (Birkhäuser/Springer, Basel, 2015), pp. 33–72

    Google Scholar 

  5. S. Akiyama, T. Sadahiro, A self-similar tiling generated by the minimal Pisot number, in Proceedings of the 13th Czech and Slovak International Conference on Number Theory (Ostravice, 1997), vol. 6 (1998), pp. 9–26

    Google Scholar 

  6. J.P. Allouche, J. Shallit, Automatic Sequences: Theory, Applications, Generalizations. (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  7. A. Andres, R. Acharya, C. Sibata, Discrete analytical hyperplanes. Graph. Model. Image Process. 59, 302–309 (1997)

    Article  Google Scholar 

  8. L. Arnold, Random Dynamical Systems. Springer Monographs in Mathematics (Springer, Berlin, 1998)

    Google Scholar 

  9. P. Arnoux, Un exemple de semi-conjugaison entre un échange d’intervalles et une translation sur le tore. Bull. Soc. Math. France 116(4), 489–500 (1989) (1988)

    Google Scholar 

  10. P. Arnoux, Le codage du flot géodésique sur la surface modulaire. Enseign. Math. (2) 40(1-2), 29–48 (1994)

    Google Scholar 

  11. P. Arnoux, Continued fractions: natural extensions and invariant measures, in Natural Extension of Arithmetic Algorithms and S-adic System. RIMS Kôkyûroku Bessatsu, vol. B58 (Res. Inst. Math. Sci. (RIMS), Kyoto, 2016), pp. 19–32

    Google Scholar 

  12. P. Arnoux, V. Berthé, M. Minervino, W. Steiner, J. Thuswaldner, Nonstationary Markov partitions, flows on homogeneous spaces, and continued fractions (2018, in preparation)

    Google Scholar 

  13. P. Arnoux, S. Ferenczi, P. Hubert, Trajectories of rotations. Acta Arith. 87(3), 209–217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Arnoux, A.M. Fisher, The scenery flow for geometric structures on the torus: the linear setting. Chinese Ann. Math. Ser. B 22(4), 427–470 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Arnoux, A.M. Fisher, Anosov families, renormalization and non-stationary subshifts. Ergodic Theory Dyn. Syst. 25(3), 661–709 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Arnoux, M. Furukado, E. Harriss, S. Ito, Algebraic numbers, free group automorphisms and substitutions on the plane. Trans. Am. Math. Soc. 363(9), 4651–4699 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Arnoux, E. Harriss, What is …a Rauzy fractal? Not. Am. Math. Soc. 61(7), 768–770 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8(2), 181–207 (2001). Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000)

    Google Scholar 

  19. P. Arnoux, S. Labbé, On some symmetric multidimensional continued fraction algorithms. Ergodic Theory Dyn. Syst. 38, 1601–1626 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Arnoux, M. Mizutani, T. Sellami, Random product of substitutions with the same incidence matrix. Theor. Comput. Sci. 543, 68–78 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Arnoux, A. Nogueira, Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles. Ann. Sci. École Norm. Sup. (4) 26(6), 645–664 (1993)

    Google Scholar 

  22. P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. France 119(2), 199–215 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Arnoux, T.A. Schmidt, Cross sections for geodesic flows and α-continued fractions. Nonlinearity 26(3), 711–726 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Arnoux, T.A. Schmidt, Commensurable continued fractions. Discrete Contin. Dyn. Syst. 34(11), 4389–4418 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Arnoux, Š. Starosta, The Rauzy gasket, in Further Developments in Fractals and Related Fields. Trends Mathematics (Birkhäuser/Springer, New York, 2013), pp. 1–23

    Google Scholar 

  26. E. Artin, Ein mechanisches System mit quasiergodischen Bahnen. Abh. Math. Sem. Univ. Hamburg 3(1), 170–175 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Auslander, Minimal Flows and Their Extensions. North-Holland Mathematics Studies, vol. 153. (North-Holland Publishing Co., Amsterdam, 1988). Notas de Matemática [Mathematical Notes], 122

    Google Scholar 

  28. A. Avila, V. Delecroix, Some monoids of Pisot matrices (2015). Preprint, http://arxiv.org/abs/1506.03692

  29. A. Avila, P. Hubert, A. Skripchenko, Diffusion for chaotic plane sections of 3-periodic surfaces. Invent. Math. 206(1), 109–146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Avila, P. Hubert, A. Skripchenko, On the Hausdorff dimension of the Rauzy gasket. Bull. Soc. Math. France 144(3), 539–568 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Barat, V. Berthé, P. Liardet, J. Thuswaldner, Dynamical directions in numeration. Ann. Inst. Fourier (Grenoble) 56(7), 1987–2092 (2006). Numération, pavages, substitutions

    Google Scholar 

  32. M. Barge, The Pisot conjecture for β-substitutions. Ergodic Theory Dyn. Syst. 38(2), 444–472 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Barge, Pure discrete spectrum for a class of one-dimensional substitution tiling systems. Discrete Contin. Dyn. Syst. 36(3), 1159–1173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Barge, B. Diamond, Coincidence for substitutions of Pisot type. Bull. Soc. Math. France 130(4), 619–626 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Barge, J. Kellendonk, Proximality and pure point spectrum for tiling dynamical systems. Mich. Math. J. 62(4), 793–822 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Barge, J. Kwapisz, Geometric theory of unimodular Pisot substitutions. Amer. J. Math. 128(5), 1219–1282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Barge, S. Štimac, R.F. Williams, Pure discrete spectrum in substitution tiling spaces. Discrete Contin. Dyn. Syst. 33(2), 579–597 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. A.Y. Belov, G.V. Kondakov, I.V. Mitrofanov, Inverse problems of symbolic dynamics, in Algebraic Methods in Dynamical Systems. Banach Center Publ., vol. 94 (Polish Acad. Sci. Inst. Math., Warsaw, 2011), pp. 43–60

    Google Scholar 

  39. J. Bernoulli, Sur une nouvelle espece de calcul. Recueil pour les Astronomes, Berlin, vol. 1 (1772), pp. 255–284

    Google Scholar 

  40. J. Berstel, Transductions and context-free languages, Leitfäden der Angewandten Mathematik und Mechanik [Guides to Applied Mathematics and Mechanics], vol. 38 (B. G. Teubner, Stuttgart, 1979)

    Google Scholar 

  41. V. Berthé, Multidimensional Euclidean algorithms, numeration and substitutions. Integers 11B, A2 (2011)

    MathSciNet  MATH  Google Scholar 

  42. V. Berthé, J. Bourdon, T. Jolivet, A. Siegel, A combinatorial approach to products of Pisot substitutions. Ergodic Theory Dyn. Syst. 36(6), 1757–1794 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Berthé, J. Cassaigne, W. Steiner, Balance properties of Arnoux-Rauzy words. Int. J. Algebra Comput. 23(4), 689–703 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. V. Berthé, V. Delecroix, Beyond substitutive dynamical systems: S-adic expansions. RIMS Lecture Note ‘Kôkyûroku Bessatsu’ B46, 81–123 (2014)

    Google Scholar 

  45. V. Berthé, E. Domenjoud, D. Jamet, X. Provençal, Fully subtractive algorithm, tribonacci numeration and connectedness of discrete planes, in Numeration and Substitution 2012. RIMS Kôkyûroku Bessatsu, vol. B46 (Res. Inst. Math. Sci. (RIMS), Kyoto, 2014), pp. 159–174

    Google Scholar 

  46. V. Berthé, S. Ferenczi, L.Q. Zamboni, Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly, in Algebraic and Topological Dynamics. Contemp. Math., vol. 385 (American Mathematical Society, Providence, RI, 2005), pp. 333–364

    Google Scholar 

  47. V. Berthé, C. Holton, L.Q. Zamboni, Initial powers of Sturmian sequences. Acta Arith. 122(4), 315–347 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. V. Berthé, T. Jolivet, A. Siegel, Substitutive Arnoux-Rauzy sequences have pure discrete spectrum. Unif. Distrib. Theory 7(1), 173–197 (2012)

    MathSciNet  MATH  Google Scholar 

  49. V. Berthé, S. Labbé, Factor complexity of S-adic words generated by the Arnoux-Rauzy-Poincaré algorithm. Adv. Appl. Math. 63, 90–130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. V. Berthé, M. Minervino, W. Steiner, J. Thuswaldner, The S-adic Pisot conjecture on two letters. Topology Appl. 205, 47–57 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. V. Berthé, A. Siegel, J.M. Thuswaldner, Substitutions, Rauzy fractals, and tilings, in Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135 (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  52. V. Berthé, W. Steiner, J.M. Thuswaldner, Geometry, dynamics, and arithmetic of S-adic shifts. Ann. Inst. Fourier (Grenoble) 69(3), 1347–1409 (2019)

    Google Scholar 

  53. S. Bezuglyi, J. Kwiatkowski, K. Medynets, B. Solomyak, Invariant measures on stationary Bratteli diagrams. Ergodic Theory Dyn. Syst. 30(4), 973–1007 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. S. Bezuglyi, J. Kwiatkowski, K. Medynets, B. Solomyak, Finite rank Bratteli diagrams: structure of invariant measures. Trans. Am. Math. Soc. 365(5), 2637–2679 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. G. Birkhoff, Extensions of Jentzsch’s theorem. Trans. Am. Math. Soc. 85, 219–227 (1957)

    MathSciNet  MATH  Google Scholar 

  56. M. Boshernitzan, A unique ergodicity of minimal symbolic flows with linear block growth. J. Anal. Math. 44, 77–96 (1984/85)

    Article  MathSciNet  MATH  Google Scholar 

  57. P. Boyland, W. Severa, Geometric representation of the infimax S-adic family. Fundam. Math. 240(1), 15–50 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. A.J. Brentjes, Multidimensional continued fraction algorithms, Mathematical Centre Tracts, vol. 145 (Mathematisch Centrum, Amsterdam, 1981)

    Google Scholar 

  59. V. Brun, Algorithmes euclidiens pour trois et quatre nombres, in Treizième congrès des mathèmaticiens scandinaves, tenu à Helsinki 18-23 août 1957 (Mercators Tryckeri, Helsinki, 1958), pp. 45–64

    Google Scholar 

  60. E.B. Burger, J. Gell-Redman, R. Kravitz, D. Walton, N. Yates, Shrinking the period lengths of continued fractions while still capturing convergents. J. Number Theory 128(1), 144–153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  61. V. Canterini, A. Siegel, Geometric representation of substitutions of Pisot type. Trans. Am. Math. Soc. 353(12), 5121–5144 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  62. J. Cassaigne, S. Ferenczi, A. Messaoudi, Weak mixing and eigenvalues for Arnoux-Rauzy sequences. Ann. Inst. Fourier (Grenoble) 58(6), 1983–2005 (2008)

    Google Scholar 

  63. J. Cassaigne, S. Ferenczi, L.Q. Zamboni, Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier (Grenoble) 50(4), 1265–1276 (2000)

    Google Scholar 

  64. J. Cassaigne, S. Labbé, J. Leroy, A set of sequences of complexity 2n + 1, in Combinatorics on Words. Lecture Notes in Comput. Sci., vol. 10432 (Springer, Cham, 2017), pp. 144–156

    Google Scholar 

  65. J. Cassaigne, F. Nicolas, Factor complexity, in: Combinatorics, Automata and Number Theory. Encyclopedia Math. Appl., vol. 135 (Cambridge University Press, Cambridge, 2010), pp. 163–247

    Google Scholar 

  66. M.I. Cortez, F. Durand, B. Host, A. Maass, Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems. J. Lond. Math. Soc. (2) 67(3), 790–804 (2003)

    Google Scholar 

  67. E.M. Coven, G.A. Hedlund, Sequences with minimal block growth. Math. Systems Theory 7, 138–153 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  68. V. Delecroix, T. Hejda, W. Steiner, Balancedness of Arnoux-Rauzy and Brun words, in WORDS. Lecture Notes in Computer Science, vol. 8079, pp. 119–131 (Springer, Berlin, 2013)

    Google Scholar 

  69. R. DeLeo, I.A. Dynnikov, Geometry of plane sections of the infinite regular skew polyhedron {4,  6∣4}. Geom. Dedicata 138, 51–67 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  70. J.M. Dumont, A. Thomas, Systemes de numeration et fonctions fractales relatifs aux substitutions. Theor. Comput. Sci. 65(2), 153–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  71. F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergodic Theory Dyn. Syst. 20, 1061–1078 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  72. F. Durand, Corrigendum and addendum to: “Linearly recurrent subshifts have a finite number of non-periodic subshift factors” [Ergodic Theory Dynam. Systems 20 (2000), no. 4, 1061–1078]. Ergodic Theory Dyn. Syst. 23, 663–669 (2003)

    Google Scholar 

  73. F. Durand, J. Leroy, G. Richomme, Do the properties of an S-adic representation determine factor complexity? J. Integer Seq. 16(2), Article 13.2.6, 30 pp. (2013)

    Google Scholar 

  74. H. Ei, Some properties of invertible substitutions of rank d, and higher dimensional substitutions. Osaka J. Math. 40(2), 543–562 (2003)

    MathSciNet  MATH  Google Scholar 

  75. H. Ei, S. Ito, H. Rao, Atomic surfaces, tilings and coincidences. II. Reducible case. Ann. Inst. Fourier (Grenoble) 56(7), 2285–2313 (2006). Numération, pavages, substitutions

    Google Scholar 

  76. M. Einsiedler, T. Ward, Ergodic Theory with a View Towards Number Theory. Graduate Texts in Mathematics, vol. 259 (Springer, London, 2011)

    Google Scholar 

  77. S. Ferenczi, Rank and symbolic complexity. Ergodic Theory Dyn. Syst. 16(4), 663–682 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  78. S. Ferenczi, A.M. Fisher, M. Talet, Minimality and unique ergodicity for adic transformations. J. Anal. Math. 109, 1–31 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  79. T. Fernique, Multidimensional Sturmian sequences and generalized substitutions. Int. J. Found. Comput. Sci. 17(3), 575–599 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  80. T. Fernique, Generation and recognition of digital planes using multi-dimensional continued fractions, in Discrete Geometry for Computer Imagery. Lecture Notes in Comput. Sci., vol. 4992 (Springer, Berlin, 2008)

    Google Scholar 

  81. A.M. Fisher, Nonstationary mixing and the unique ergodicity of adic transformations. Stochastics Dyn. 9(3), 335–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  82. N.P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Mathematics, vol. 1794 (Springer, Berlin, 2002)

    Google Scholar 

  83. T. Fujita, S. Ito, M. Keane, M. Ohtsuki, On almost everywhere exponential convergence of the modified Jacobi-Perron algorithm: a corrected proof. Ergodic Theory Dyn. Syst. 16(6), 1345–1352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  84. H. Furstenberg, Stationary Processes and Prediction Theory. Annals of Mathematics Studies, No. 44 (Princeton University Press, Princeton, NJ, 1960)

    Google Scholar 

  85. P.R. Halmos, Lectures on Ergodic Theory (Chelsea Publishing Co., New York, 1960)

    MATH  Google Scholar 

  86. C. Holton, L.Q. Zamboni, Geometric realizations of substitutions. Bull. Soc. Math. France 126(2), 149–179 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  87. J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Series in Computer Science (Addison-Wesley Publishing Co., Reading, MA, 1979).

    Google Scholar 

  88. P. Hubert, A. Messaoudi, Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals. Acta Arith. 124(1), 1–15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  89. S. Ito, M. Kimura, On Rauzy fractal. Japan J. Ind. Appl. Math. 8(3), 461–486 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  90. S. Ito, M. Ohtsuki, Parallelogram tilings and Jacobi-Perron algorithm. Tokyo J. Math. 17(1), 33–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  91. S. Ito, H. Rao, Atomic surfaces, tilings and coincidence. I. Irreducible case. Israel J. Math. 153, 129–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  92. D. Jamet, N. Lafrenière, X. Provençal, Generation of digital planes using generalized continued-fractions algorithms, in Discrete Geometry for Computer Imagery. Lecture Notes in Comput. Sci., vol. 9647, pp. 45–56 (Springer, Cham, 2016)

    Google Scholar 

  93. D. Jamet, J.L. Toutant, On the connectedness of rational arithmetic discrete hyperplanes, in Discrete Geometry for Computer Imagery. Lecture Notes in Comput. Sci., vol. 4245, (Springer, Berlin, 2006), pp. 223–234

    Google Scholar 

  94. A. Katok, Interval exchange transformations and some special flows are not mixing. Israel J. Math. 35(4), 301–310 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  95. S. Labbé, 3-dimensional continued fraction algorithms cheat sheets (2015). http://arxiv.org/abs/1511.08399

  96. J. Lagarias, Y. Wang, Self-affine tiles in \(\mathbb {R}^n\). Adv. Math. 121, 21–49 (1996)

    Google Scholar 

  97. J. Leroy, Some improvements of the S-adic conjecture. Adv. Appl. Math. 48(1), 79–98 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  98. J. Leroy, An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n + 1) − p(n) ≤ 2. Discrete Math. Theor. Comput. Sci. 16(1), 233–286 (2014)

    MathSciNet  MATH  Google Scholar 

  99. G. Levitt, La dynamique des pseudogroupes de rotations. Invent. Math. 113(3), 633–670 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  100. B. Loridant, M. Minervino, Geometrical models for a class of reducible Pisot substitutions. Discrete Comput. Geom. 60, 981–1028 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  101. M. Lothaire, Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applications, vol. 90 (Cambridge University Press, Cambridge, 2002). A collective work by J. Berstel, D. Perrin, P. Seebold, J. Cassaigne, A. De Luca, S. Varricchio, A. Lascoux, B. Leclerc, J.-Y. Thibon, V. Bruyere, C. Frougny, F. Mignosi, A. Restivo, C. Reutenauer, D. Foata, G.-N. Han, J. Desarmenien, V. Diekert, T. Harju, J. Karhumaki and W. Plandowski, with a preface by J. Berstel and D. Perrin

    Google Scholar 

  102. R. Meester, A simple proof of the exponential convergence of the modified Jacobi-Perron algorithm. Ergodic Theory Dyn. Syst. 19(4), 1077–1083 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  103. A. Messaoudi, Frontière du fractal de Rauzy et système de numération complexe. Acta Arith. 95(3), 195–224 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  104. A. Messaoudi, Propriétés arithmétiques et topologiques d’une classe d’ensembles fractales. Acta Arith. 121(4), 341–366 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  105. M. Minervino, W. Steiner, Tilings for Pisot beta numeration. Indag. Math. (N.S.) 25(4), 745–773 (2014)

    Google Scholar 

  106. M. Minervino, J.M. Thuswaldner, The geometry of non-unit Pisot substitutions. Ann. Inst. Fourier (Grenoble) 64(4), 1373–1417 (2014)

    Google Scholar 

  107. M. Morse, G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Am. J. Math. 62, 1–42 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  108. H. Nakada, S. Ito, S. Tanaka, On the invariant measure for the transformations associated with some real continued-fractions. Keio Eng. Rep. 30(13), 159–175 (1977)

    MathSciNet  MATH  Google Scholar 

  109. O. Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64(1), 1–76 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  110. M. Queffélec, Substitution Dynamical Systems—Spectral Analysis. Lecture Notes in Mathematics, vol. 1294, 2nd edn. (Springer, Berlin, 2010)

    Google Scholar 

  111. C. Radin, M. Wolff, Space tilings and local isomorphism. Geom. Dedicata 42(3), 355–360 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  112. G. Rauzy, Une généralisation du développement en fraction continue, in Séminaire Delange-Pisot-Poitou, 18e année: 1976/77, Théorie des nombres, Fasc. 1, pp. Exp. No. 15, 16 (Secrétariat Math., Paris, 1977)

    Google Scholar 

  113. G. Rauzy, échanges d’intervalles et transformations induites. Acta Arith. 34(4), 315–328 (1979)

    Google Scholar 

  114. G. Rauzy, Nombres algébriques et substitutions. Bull. Soc. Math. France 110(2), 147–178 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  115. J.P. Reveillès, Géométrie discrète, calculs en nombres entiers et algorithmes. Ph.D. thesis, Université Louis Pasteur, Strasbourg (1991)

    Google Scholar 

  116. V.A. Rohlin, Exact endomorphism of a Lebesgue space. Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 14, 443–474 (1964)

    MathSciNet  Google Scholar 

  117. Y. Sano, P. Arnoux, S. Ito, Higher dimensional extensions of substitutions and their dual maps. J. Anal. Math. 83, 183–206 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  118. B.R. Schratzberger, The exponent of convergence for Brun’s algorithm in two dimensions. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207, 229–238 (1999) (1998)

    Google Scholar 

  119. F. Schweiger, Multidimensional Continued Fractions Oxford Science Publications (Oxford University Press, Oxford, 2000)

    MATH  Google Scholar 

  120. E.S. Selmer, Continued fractions in several dimensions. Nordisk Nat. Tidskr. 9, 37–43, 95 (1961)

    Google Scholar 

  121. C. Series, The modular surface and continued fractions. J. London Math. Soc. (2) 31(1), 69–80 (1985)

    Google Scholar 

  122. A. Siegel, Représentation des systèmes dynamiques substitutifs non unimodulaires. Ergodic Theory Dyn. Syst. 23(4), 1247–1273 (2003)

    Article  MATH  Google Scholar 

  123. A. Siegel, J.M. Thuswaldner, Topological properties of Rauzy fractals. Mém. Soc. Math. Fr. (N.S.) 118, 144pp (2009)

    Google Scholar 

  124. V.F. Sirvent, Y. Wang, Self-affine tiling via substitution dynamical systems and Rauzy fractals. Pac. J. Math. 206(2), 465–485 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  125. M. Viana, Ergodic theory of interval exchange maps. Rev. Mat. Complut. 19(1), 7–100 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  126. P. Walters, An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79 (Springer, New York, 1982)

    Google Scholar 

Download references

Acknowledgements

I warmly thank Shigeki Akiyama and Pierre Arnoux for inviting me to contribute to this volume. I very much appreciate their constant encouragement and support, and the many discussions I had with them. Moreover, I am indebted to Valérie Berthé, Sébastien Labbé, and Wolfgang Steiner for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg M. Thuswaldner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thuswaldner, J.M. (2020). S-adic Sequences: A Bridge Between Dynamics, Arithmetic, and Geometry. In: Akiyama, S., Arnoux, P. (eds) Substitution and Tiling Dynamics: Introduction to Self-inducing Structures. Lecture Notes in Mathematics, vol 2273. Springer, Cham. https://doi.org/10.1007/978-3-030-57666-0_3

Download citation

Publish with us

Policies and ethics