Skip to main content

Phytochemical Diversity of Halophytes

  • Reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Halophytes are specific ecological group of salt-tolerant plants capable of accomplishing their life cycle under saline conditions. The survival of halophytes under saline stress conditions involves various morphoanatomical and ecophysiological mechanisms of adaptation including reduction of the Na+ influx, compartmentalization, as well as excretion of sodium ions, which are linked with signal transduction, ROS (reactive oxygen species) generation and detoxification, osmoregulation, and differential expression of genes and transcription factors. Also, adaptations involved in salt avoidance are secretion, shedding, and succulence. The complex mechanisms of adaptation to salt stress indicate the importance of biochemical mechanisms and the many molecules involved in this process. Based on the above facts, this chapter describes important aspects of the phytochemical diversity of halophytes. The mechanisms of osmoprotection as well as the diversity of osmolytes involved in this process are presented. Also, the scientific and practical significance of halophyte secondary metabolism as well as the major groups of secondary metabolites has been reviewed for the main representatives of halophyte species from families such as Acanthaceae, Aizoaceae, Amaranthaceae, Apiaceae, Asteraceae, Brassicaceae, Caryophyllaceae, Combretacae, Convolvulaceae, Euphorbiaceae, Fabaceae, Frankeniaceae, Fumariaceae, Juncaceae, Lamiaceae, Malvaceae, Plantaginaceae, Plumbaginaceae, Primulaceae, Rhizophoraceae, Salvadoraceae, Tamaricaceae, and Zygophyllaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, A., & Yun, D. J. (2017). Salt stress tolerance; what do we learn from halophytes? Journal of Plant Biology, 60, 431–439.

    Article  CAS  Google Scholar 

  • Allakhverdiev, S., Nishiyama, Y., Suzuki, I., Tasaka, Y., & Murata, N. (1999). Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proceedings of the National Academy of Sciences of the United States of America, 96, 5862–5867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aquino, R. S., Grativol, C., & Mourão, P. A. (2011). Rising from the sea: Correlations between sulfated polysaccharides and salinity in plants. PLoS One, 6, e18862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206–216.

    Article  CAS  Google Scholar 

  • Awaad, A. S. (2006). Phenolic glycosides of Juncus acutus and its anti-eczematic activity. Chemistry of Natural Compounds, 42, 152–155.

    Article  CAS  Google Scholar 

  • Bartnik, M., Wierzchowska Renke, K., GÅ‚owniak, P., & GÅ‚owniak, K. (2017). Phenolic acids in Crithmum maritimum L. (Apiaceae) after Tytanit fertilization. Acta Societatis Botanicorum Poloniae, 86(3), 3560. https://doi.org/10.5586/asbp.3560.

    Article  CAS  Google Scholar 

  • Belmimoun, A., Meddah, B., Side Larbi, K., & Sonnet, P. (2020). Phytochemical study of Zygophyllum album extract. International Journal of Engineering Technologies and Management Research, 4(5), 1–10.

    Article  Google Scholar 

  • Ben Mansour, R., Wided, M. K., Cluzet, S., Krisa, S., Richard, T., & Ksouri, R. (2017). LC-MS identification and preparative HPLC isolation of Frankenia pulverulenta phenolics with antioxidant and neuroprotective capacities in PC12 cell line. Pharmaceutical Biology, 55(1), 880–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boestfleisch, C., Wagenseil, N. B., Buhmann, A. K., Seal, C. E., Wade, E. M., Muscolo, A., & Papenbrock, J. (2014). Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation. AoB Plants, 6.

    Google Scholar 

  • Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2014). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65, 1241–1257.

    Article  CAS  PubMed  Google Scholar 

  • Boudermine, S., Malafronte, N., Mencherini, T., Esposito, T., Aquino, P. R., Beghidja, N., Benayache, S., D’Ambola, M., & Vassallo, A. (2015). Phenolic compounds from. Limonium Pruinosum, 10(2), 319–321.

    Google Scholar 

  • Boulaaba, M., Mkadmini, K., Tsolmon, S., Han, J., Smaoui, A., Kawada, K., Ksouri, R., Isoda, H., & Abdelly, C. (2013). In Vitro antiproliferative effect of Arthrocnemum indicum extracts on Caco-2 cancer cells through cell cycle control and related phenol LC-TOF-MS identification. Evidence-based Complementary and Alternative Medicine, 529375. https://doi.org/10.1155/2013/529375.

  • Boutellaa, S., Zellagui, A., Öztürk, M., Bensouici, C., Ölmez, Ö. T., Menakh, M., & Duru, M. E. (2019). HPLC-DAD profiling and antioxidant activity of the n-butanol extract from aerial parts of Algerian Crithmum maritimum L. Acta Scientiarum Naturalium, 6, 8–16.

    Article  CAS  Google Scholar 

  • Buhmann, A., & Papenbrock, J. (2013). An economic point of view of secondary compounds in halophytes. Functional Plant Biology, 40, 952–967.

    Article  PubMed  Google Scholar 

  • Bui, E. N. (2013). Soil salinity: A neglected factor in plant ecology and biogeography. Journal of Arid Environments, 92, 14–25.

    Article  Google Scholar 

  • Chanwitheesuk, A., Teerawutgulrag, A., & Rakariyatham, N. (2005). Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chemistry, 92, 491–497.

    Article  CAS  Google Scholar 

  • Cheeseman, J. M. (2015). The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. The New Phytologist, 206, 557–570.

    Article  PubMed  Google Scholar 

  • Chiavaroli, A., Sinan, K. I., Zengin, G., Mahomoodally, M. F., Sadeer, N. B., Etienne, O. K., Cziáky, Z., JekÅ‘, J., Glamocilja, J., Sokovic, M., Recinella, L., Brunetti, L., Leone, S., Abdullah, H. H., Angelini, P., Flores, G. A., Venanzoni, R., Menghini, L., Orlando, G., & Ferrante, C. (2020). Identification of chemical profiles and biological properties of Rhizophora racemosa G. Mey. Extracts obtained by different methods and solvents. Antioxidants, 9(6), 533. https://doi.org/10.3390/antiox9060533.

    Article  CAS  PubMed Central  Google Scholar 

  • Cho, J. Y., Kim, M. S., Lee, Y. G., Jeong, H. Y., Lee, H. J., Ham, K. S., & Moon, J. H. (2016). A phenyl lipid alkaloid and flavone C-diglucosides from Spergularia marina. Food Science and Biotechnology, 25(1), 63–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chomel, M., Guittonny-Larchevêque, M., Fernandez, C., Gallet, C., DesRochers, A., Pare, D., Jackson, B., & Baldy, V. (2016). Plant secondary metabolites: A key driver of litter decomposition and soil nutrient cycling. Journal of Ecology, 104, 1527–1541.

    Article  Google Scholar 

  • Clauser, M., Dall’Acqua, S., Loi, M. C., & Innocenti, G. (2013). Phytochemical investigation on Atriplex halimus L. from Sardinia. Natural Product Research, 27(20), 1940–1944.

    Article  CAS  PubMed  Google Scholar 

  • D’Souza, L., Wahidulla, S., & Devi, P. (2010). Antibacterial phenolics from the mangrove Lumnitzera racemosa. Indian Journal of Marine Sciences, 39, 294–298.

    Google Scholar 

  • Dutra, D. M., Barth, C. D., Block, L. C., Quintão, N. L., Couto, A. G., Filho, V., & Bresolin, T. B. (2014). Simultaneous determination of four phenolic compounds in extracts of aerial parts of Ipomoea pes-caprae (L.) R. Br. (Convolvulaceae) by HPLC-UV. Química Nova, 37, 1510–1514.

    CAS  Google Scholar 

  • ElNaker, N. A., Yousef, A. F., & Yousef, L. F. (2020). A review of Arthrocnemum (Arthrocaulon) macrostachyum chemical content and bioactivity. Phytochemistry Reviews. https://doi.org/10.1007/s11101-020-09686-5.

  • Elsharabasy, F. S., Metwally, N. S., Mahmoud, A. H., Soliman, M. S., Youness, E. R., Farrag, A. H., & Arafa, S. (2019). Phytoconstituents and hepatoprotective effect of Suaeda monoica Forssk and Suaeda pruinosa Lange. Biomedical and Pharmacology Journal, 11(1), 117–129.

    Google Scholar 

  • El-Toumy, S. A., Salib, J. Y., Mohamed, W. M., & Morsy, F. A. (2010). Phytochemical and antimicrobial studies on Acacia saligna leaves. Egyptian Journal of Chemistry, 53(5), 705–717. https://doi.org/10.21608/ejchem.2010.1259.

    Article  CAS  Google Scholar 

  • Falleh, H., Ksouri, R., Boulaaba, M., Guyot, S., Abdelly, C., & Magné, C. (2012). Phenolic nature, occurrence and polymerization degree as marker of environmental adaptation in the edible halophyte Mesembryanthemum edule. South African Journal of Botany, 79, 117–124.

    Article  CAS  Google Scholar 

  • Ferrante, C., Zengin, G., Menghini, L., Diuzheva, A., JekÅ‘, J., Cziáky, Z., Recinella, L., Chiavaroli, A., Leone, S., Brunetti, L., Lobine, D., Senkardes, I., Mahomoodally, M. F., & Orlando, G. (2019). Qualitative fingerprint analysis and multidirectional assessment of different crude extracts and essential oil from wild Artemisia santonicum L. Processes, 2019(7), 522.

    Article  CAS  Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 945–963.

    Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2015). Plant salt tolerance: Adaptations in halophytes. Annals of Botany, 115, 327–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology, 37, 604–612.

    Article  Google Scholar 

  • Gamal, E. O., Eman, S., Aly Amal, H., Abdallah Rokia, M., & Abdel-Salam Nabil, A. (2014). Phytochemical and biological investigation of Spergularia marina (L.) Griseb. Growing in Egypt. Natural Product Research, 20, 152–159.

    Google Scholar 

  • Giorgi, A. D., Madeo, M., Speranza, G., & Cocucci, M. (2010). Influence of environmental factors on composition of phenolic antioxidants of Achillea collina Becker ex Rchb. Natural Product Research, 24, 1546–1559.

    Article  CAS  PubMed  Google Scholar 

  • Gnanadesigan, M., Ravikumar, S., & Anand, M. (2017). Hepatoprotective activity of Ceriops decandra (Griff.) Ding Hou mangrove plant against CCl4 induced liver damage. Journal of Taibah University for Science, 11, 450–457.

    Article  Google Scholar 

  • GoÄ‘evac, D., Stanković, J., Novaković, M., AnÄ‘elković, B., Dajić-Stevanović, Z., Petrović, M., & Stanković, M. (2015). Phenolic compounds from Atriplex littoralis and their radiation-mitigating activity. Journal of Natural Products, 78(9), 2198–2204.

    Article  PubMed  CAS  Google Scholar 

  • Grigore, M. N., Boscaiu Neagu, M. T., & Vicente Meana, Ó. (2011). Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. European Journal of Plant Science and Biotechnology, 5, 12–19.

    Google Scholar 

  • Hajlaoui, H., Mighri, H., Hamdaui, G., & Aouni, M. (2015). Antioxidant activities and RP-HPLC identification of polyphenols in the methanolic extract of Mentha genus. Tunisian Journal of Medicinal Plants and Natural Products, 14, 1–11.

    Google Scholar 

  • Huang, C., Lu, C. K,, Tu, M. C., Chang, J. H., Chen, Y. J., Tu, Y.H., Huang, H. C. (2016). Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model. Oncotarget, 7(24), 35874–35893. https://doi.org/10.18632/oncotarget.8624.

  • Ibdah, M., Krins, A., Seidlitz, H. K., Heller, W., Strack, D., & Vogt, T. (2002). Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation. Plant, Cell & Environment, 25, 1145–1154.

    Article  CAS  Google Scholar 

  • Ibtissem, B., Imen, M., & Souad, S. (2010). Dosage of 2,6-bis (1.1-dimethylethyl)-4-methylphenol (BHT) in the plant extract Mesembryanthemum crystallinum. Journal of Biomedicine & Biotechnology, 142486. https://doi.org/10.1155/2010/142486.

  • Iyda, J. H., Fernandes, Â., Ferreira, F. D., Alves, M. J., Pires, T. C., Barros, L., Amaral, J. S., & Ferreira, I. C. (2019). Chemical composition and bioactive properties of the wild edible plant Raphanus raphanistrum L. Food Research International, 121, 714–722.

    Article  CAS  PubMed  Google Scholar 

  • Jakovljević, D., Stanković, M., Bojović, B., & Topuzović, M. (2017). Regulation of early growth and antioxidant defense mechanism of sweet basil seedlings in response to nutrition. Acta Physiologiae Plantarum, 39, 243.

    Article  CAS  Google Scholar 

  • Jakovljević, D., Topuzović, M., & Stanković, M. (2019). Nutrient limitation as a tool for the induction of secondary metabolites with antioxidant activity in basil cultivars. Industrial Crops and Products, 138.

    Google Scholar 

  • Jallali, I., Teguo, P. W., Smaoui, A., Mérillon, J., Abdelly, C., & Ksouri, R. (2020). Bio-guided fractionation and characterization of powerful antioxidant compounds from the halophyte Inula crithmoides. Arabian Journal of Chemistry, 13, 2680–2688.

    Article  CAS  Google Scholar 

  • Jdey, A., Falleh, H., Jannet, S. B., Hammi, K. M., Dauvergne, X., Ksouri, R., & Magné, C. (2017). Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. South African Journal of Botany, 112, 508–514.

    Article  CAS  Google Scholar 

  • Karker, M., Falleh, H., Msaada, K., Smaoui, A., Abdelly, C., Legault, J., & Ksouri, R. (2016). Antioxidant, anti-inflammatory and anticancer activities of the medicinal halophyte Reaumuria vermiculata. EXCLI Journal, 15, 297–307.

    PubMed  PubMed Central  Google Scholar 

  • Kim, Y. A., Kong, C. S., Park, H. H., Eunkyung, L., Jang, M. S., Nam, K. H., & Seo, Y. (2015). Anti-inflammatory activity of heterocarpin from the salt marsh plant Corydalis heterocarpa in LPS-induced RAW 264.7 macrophage cells. Molecules, 20(8), 14474–14486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyro, H. W., Khan, M. A., & Lieth, H. (2011). Halophytic crops: A resource for the future to reduce the water crisis? Emirates Journal of Food and Agriculture, 23, 1–16.

    Article  Google Scholar 

  • Kráľová, K., Jampílek, J., & Ostrovský, I. (2012). Metabolomics-useful tool for study of plant responses to abiotic stresses. Ecological Chemistry and Engineering S, 19, 133–161.

    Article  CAS  Google Scholar 

  • Ksouri, R., Ksouri, W. M., Jallali, I., Debez, A., Magné, C., Hiroko, I., & Abdelly, C. (2012). Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Critical Reviews in Biotechnology, 32, 289–326.

    Article  CAS  PubMed  Google Scholar 

  • Kumari, A., & Parida, A. K. (2016). Metabolite profiling of the leaf extract reveals the antioxidant and nutraceuticals potential of the halophyte Salvadora persica. RSC Advances, 6, 51629–51641.

    Article  CAS  Google Scholar 

  • Lee, Y. S., Lee, H. S., Shin, K. H., Kim, B. K., & Lee, S. (2004). Constituents of the halophyte Salicornia herbacea. Archives of Pharmacal Research, 27, 1034–1036.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. S., Lee, S., Lee, H. S., Kim, B. K., Ohuchi, K., & Shin, K. H. (2005). Inhibitory effects of isorhamnetin-3-O-beta-D-glucoside from Salicornia herbacea on rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. Biological & Pharmaceutical Bulletin, 28(5), 916–918.

    Article  CAS  Google Scholar 

  • Li, C., Fang, B., Yang, C., Shi, D., & Wang, D. (2009). Effects of various salt–alkaline mixed stresses on the state of mineral elements in nutrient solutions and the growth of alkali resistant halophyte Chloris virgata. Journal of Plant Nutrition, 32, 1137–1147.

    Article  CAS  Google Scholar 

  • Li, R., Shi, F., & Fukuda, K. (2010). Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte Spartina alterniflora (Poaceae). South African Journal of Botany, 76, 380–387.

    Article  Google Scholar 

  • Lin, L. C., & Chou, C. J. (2000). Flavonoids and phenolics from Limonium sinense. Planta Medica, 66(4), 382–383.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Shang, R., Cheng, F., Wang, X., Hao, B., & Liang, J. (2016). Flavonoids and phenolics from the flowers of Limonium aureum. Chemistry of Natural Compounds, 52, 130–131.

    Article  CAS  Google Scholar 

  • Megdiche-Ksouri, W., Trabelsi, N., Mkadmini, K., Bourgou, S., Noumi, A., Snoussi, M., Barbria, R., Tebourbi, O., & Ksouri, R. (2015). Artemisia campestris phenolic compounds have antioxidant and antimicrobial activity. Industrial Crops and Products, 63, 104–113.

    Article  CAS  Google Scholar 

  • Meot-Duros, L., & Magné, C. (2009). Antioxidant activity and phenol content of Crithmum maritimum L. leaves. Plant Physiology and Biochemistry, 47, 37–41.

    Article  CAS  PubMed  Google Scholar 

  • Minjuan, X., Zhiwei, D., Min, L., Jun, L., Hongzheng, F., Peter, P., & Wenhan, L. (2004). Chemical constituents from the mangrove plant, Aegiceras corniculatum. Journal of Natural Products, 67(5), 762–766.

    Article  CAS  Google Scholar 

  • Mishra, A., & Tanna, B. (2017). Halophytes: Potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science, 8, 829.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondal, S., Ghosh, D., & Ramakrishna, K. (2016). A complete profile on blind-your-eye mangrove Excoecaria agallocha L. (Euphorbiaceae): Ethnobotany, phytochemistry, and pharmacological aspects. Pharmacy Review, 10(20), 123–138.

    Article  CAS  Google Scholar 

  • Murai, Y., Setoguchi, H., Ono, E., & Iwashina, T. (2015). Flavonoids and their qualitative variation in Calystegia soldanella and related species (Convolvulaceae). Natural Product Communications. https://doi.org/10.1177/1934578X1501000313.

  • Nahar, K., Hasanuzzaman, M., & Fujita, M. (2016). Roles of osmolytes in plant adaptation to drought and salinity. In Osmolytes and plants acclimation to Changing: Emerging omics technologies. New Delhi: Springer.

    Google Scholar 

  • Nikalje, G. C., Yadav, K., & Penna, S. (2019). Halophyte responses and tolerance to abiotic stresses. In Ecophysiology, abiotic stress responses and utilization of halophytes. Singapore: Springer.

    Google Scholar 

  • Oh, J. H., Kim, E. O., Lee, S. K., Woo, M. H., & Choi, S. W. (2007). Antioxidant activities of the ethanol extract of hamcho (Salicornia herbacea L.) cake prepared by enzymatic treatment. Food Science and Biotechnology, 16, 90–98.

    Google Scholar 

  • Oueslati, S., Trabelsi, N., Boulaaba, M., Legault, J. M., Abdelly, C., & Ksouri, R. (2012). Evaluation of antioxidant activities of the edible and medicinal Suaeda species and related phenolic compounds. Industrial Crops and Products, 36, 513–518.

    Article  CAS  Google Scholar 

  • Park, S. H., & Kim, K. S. (2004). Isolation and identification of antioxidant flavonoids from Salicornia herbacea L. Journal of Korean Society for Applied Biological Chemistry, 47, 120–123.

    CAS  Google Scholar 

  • Pereira, C. G., Custódio, L., Rodrigues, M. J., Neng, N. R., Nogueira, J. M. F., Carlier, J., Costa, M. C., Varela, J., & Barreira, L. (2017). Profiling of antioxidant potential and phytoconstituents of Plantago coronopus. Brazilian Journal of Biology, 77(3), 632–641.

    Article  CAS  Google Scholar 

  • Placines, C., Castañeda-Loaiza, V., João Rodrigues, M. G., Pereira, C., Stefanucci, A., Mollica, A., Zengin, G., Llorent-Martínez, E. J., Castilho, P. C., & Custódio, L. (2020). Phenolic profile, toxicity, enzyme inhibition, in silico studies, and antioxidant properties of Cakile maritima Scop. (Brassicaceae) from Southern Portugal. Plants, 9, 142.

    Article  CAS  PubMed Central  Google Scholar 

  • Rahman, M. M., Kim, M. J., Kim, J. H., Kim, S. H., Go, H. K., Kweon, M. H., & Kim, D. H. (2018). Desalted Salicornia europaea powder and its active constituent, trans-ferulic acid, exert anti-obesity effects by suppressing adipogenic-related factors. Pharmaceutical Biology, 56(1), 183–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangani, J., Kumari, A., Patel, M., Brahmbhatt, H., & Parida, A. K. (2019). Phytochemical profiling, polyphenol composition, and antioxidant activity of the leaf extract from the medicinal halophyte Thespesia populnea reveal a potential source of bioactive compounds and nutraceuticals. Journal of Food Biochemistry, 43, e12731. https://doi.org/10.1111/jfbc.12731.

    Article  CAS  PubMed  Google Scholar 

  • Reginato, M. A., Castagna, A., Furlán, A., Castro, S., Ranieri, A., & Luna, V. (2014). Physiological responses of a halophytic shrub to salt stress by Na2SO4 and NaCl: Oxidative damage and the role of polyphenols in antioxidant protection. AoB Plants, 6.

    Google Scholar 

  • Renna, M. (2018). Reviewing the prospects of sea fennel (Crithmum maritimum L.) as emerging vegetable crop. Plants, 7(4), 92. https://doi.org/10.3390/plants7040092.

    Article  CAS  PubMed Central  Google Scholar 

  • Rjeibi, I., Saad, A. B., Ncib, S., & Souid, S. (2017). Phenolic composition and antioxidant properties of Eryngium maritimum (sea holly). Journal of Coastal Life Medicine, 5, 212–215.

    Article  CAS  Google Scholar 

  • Ruiz-Riaguas, A., Zengin, G., Ki, S., Salazar-Mendías, C., & Llorent-Martínez, E. J. (2020). Phenolic profile, antioxidant activity, and enzyme inhibitory properties of Limonium delicatulum (Girard) Kuntze and Limonium quesadense Erben. Journal of Chemistry. https://doi.org/10.1155/2020/1016208.

  • Sabovljević, M., & Sabovljević, A. (2007). Contribution to the coastal bryophytes of the northern Mediterranean: Are there halophytes among bryophytes. Phytologia Balcanica, 13, 131–135.

    Google Scholar 

  • Sahli, R., Rivière, C., Neut, C., Séron, K., Samaillie, J., Roumy, V., Hennebelle, T., Ksouri, R., & Sahpaz, S. (2015). A phytochemical and biological study of Juncus maritimus, an extremophile plant from Tunisia. Planta Medica, 81(16). https://doi.org/10.1055/s-0035-1565365.

  • Salemi, S., Gherraf, N., Laouini, S. E., Guerram, A., Berrani, D., & Ali, T. (2018). Phenolic content, HPLC analysis and antioxidant activity of extracts from Tamarix gallica and Tamarix articulata growing in southeast of Algeria. Research Journal of Pharmacy and Technology, 11(9), 3826–3832.

    Article  Google Scholar 

  • Sanchez, D. H., Siahpoosh, M. R., Roessner, U., Udvardi, M., & Kopka, J. (2008). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 132, 209–219.

    CAS  PubMed  Google Scholar 

  • Shahat, A. A., Abdel-Azim, N. S., Pieters, L., & Vlietinck, A. J. (2004). Flavonoids from Cressa cretica. Pharmaceutical Biology, 42, 349–352.

    Article  CAS  Google Scholar 

  • Sharma, R., Wungrampha, S., Singh, V., Pareek, A., & Sharma, M. K. (2016). Halophytes as bioenergy crops. Frontiers in Plant Science, 7, 1372.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shehab, N. G., & Abu-Gharbieh, E. (2014). Phenolic profiling and evaluation of contraceptive effect of the ethanolic extract of Salsola imbricata Forssk. in male Albino Rats. Evidence-Based Complementary and Alternative Medicine, 2014.

    Google Scholar 

  • Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savoure, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115, 433–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolowska-Krzaczek, A., Skalicka-Wozniak, K., & Czubkowska, K. (2009). Variation of phenolic acids from herb and roots of Salsola kali L. Acta Societatis Botanicorum Poloniae, 78(3), 197–201.

    CAS  Google Scholar 

  • Stanković, S. M., Petrović, M., Godjevac, D., & Stevanović Dajić, Z. (2015). Screening inland halophytes from the Central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: Are there any prospective medicinal plants? Journal of Arid Environments, 120, 26–32.

    Article  Google Scholar 

  • Stanković, M., Jakovljević, D., Stojadinov, M., & Stevanović, Z. D. (2019). Halophyte species as a source of secondary metabolites with antioxidant activity. In Ecophysiology, abiotic stress responses and utilization of halophytes. Singapore: Springer.

    Google Scholar 

  • Stevanović, Z. D., Stanković, M. S., Stanković, J., Janacković, P., & Stanković, M. (2019). Use of halophytes as medicinal plants: Phytochemical diversity and biological activity. In Halophytes and climate change: Adaptive mechanisms and potential uses. CABI.

    Google Scholar 

  • Sunita, P., & Jha, S. (2012). Constituents of Cressa cretica L., a halophytic plant. Asian Journal of Chemistry, 24(6), 2730–2732.

    CAS  Google Scholar 

  • Szabados, L., & Savouré, A. (2010). Proline: A multifunctional amino acid. Trends in Plant Science, 15, 89–97.

    Article  CAS  PubMed  Google Scholar 

  • TuÄŸ, G. N., & Yaprak, A. E. (2019). An overview of the germination behavior of halophytes and their role in food security. In Ecophysiology, abiotic stress responses and utilization of halophytes. Singapore: Springer.

    Google Scholar 

  • Türkan, I., & Demiral, T. (2009). Recent developments in understanding salinity tolerance. Environmental and Experimental Botany, 67, 2–9.

    Article  CAS  Google Scholar 

  • Ventura, Y., & Sagi, M. (2013). Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environmental and Experimental Botany, 92, 144–153.

    Article  Google Scholar 

  • Vilela, C., Santos, S. A., Coelho, D., Silva, A. S., Freire, C. S., Neto, C. P., & Silvestre, A. J. (2014). Screening of lipophilic and phenolic extractives from different morphological parts of Halimione portulacoides. Industrial Crops and Products, 52, 373–379.

    Article  CAS  Google Scholar 

  • Vizetto-Duarte, C., Figueiredo, F., Rodrigues, M. J., Polo, C., ReÅ¡ek, E., & Custódio, L. (2019). Sustainable valorization of halophytes from the Mediterranean area: A comprehensive evaluation of their fatty acid profile and implications for human and animal nutrition. Sustainability, 11, 2197.

    Article  CAS  Google Scholar 

  • Zengin, G., Aumeeruddy-Elalfi, Z., Mollica, A., Yilmaz, M. A., & Mahomoodally, M. F. (2018). In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species – A source of innovative phytopharmaceuticals from nature. Phytomedicine, 38, 35–44.

    Article  CAS  PubMed  Google Scholar 

  • Zulfiqar, F., Akram, N. A., & Ashraf, M. (2020). Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta, 251, 3(2020). https://doi.org/10.1007/s00425-019-03293-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Stanković .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stanković, M., Jakovljević, D. (2021). Phytochemical Diversity of Halophytes. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-57635-6_125

Download citation

Publish with us

Policies and ethics