Skip to main content

Abstract

Neural networks are applied now in many fields. It is de facto efficient and flexible tool for analysis, which could be applied where other traditional approaches are impossible. It also gives new knowledge on the basis of data analysis. In this paper, traditional regression approach is considered in comparison with neural network for regional attenuation model assessment - peak ground acceleration (PGA) variation with magnitude and hypocentral distance. Such a simple set of parameters is not usual for neural networks, but simple, and result differences are clear. Dataset was prepared on the base of K-net network data. Records of stations with Vs 30 > 700 m/s were used. Accelerations have wide dispersion, and both of the approaches gave different results: when regression is forced by a given form of linear combination, neural network is more flexible. For example, it was found that for magnitude M = 4, in close distances R > 10 km PGA(R) curve is close to M < 4 curves, and for R > 10 km has the same manner as M > 4 curves. So M = 4, R = 10 km is some kind of “point of inflection” between near field and far field zones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramson, N., Braverman, D.: Learning to recognize patterns in a random environment. IRE Trans. Inf. Theor. 8(5), 58–63 (1962). https://doi.org/10.1109/TIT.1962.1057775

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramson, N., Braverman, D., Sebastian, G.: Pattern recognition and machine learning. IRE Trans. Inf. Theor. 9(4), 257–261 (1963). https://doi.org/10.1109/TIT.1962.1057775

    Article  Google Scholar 

  3. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943). https://doi.org/10.1016/s0092-8240(05)80006-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Hebb, D.O.: The organization of behavior: a neuropsychological theory. Brain Res. Bull. 50(5–6), 437 (1999). https://doi.org/10.1016/s0361-9230(99)00182-3

    Article  Google Scholar 

  5. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958). https://doi.org/10.1037/h0042519

    Article  Google Scholar 

  6. Rosenblatt, F.: Principles of Neurodynamics. Brain Theor. Spartan, 245–248 (1962). https://doi.org/10.1007/978-3-642-70911-1_20

  7. Widrow, B., Hoff, M.E.: Adaptive switching circuits. WESCON Conf. 4, 96–104 (1960). https://doi.org/10.21236/ad0241531

    Article  Google Scholar 

  8. Steinbuch, K.: Die lernmatrix. Kybernetik (Biological Cybernetics) 1, 36–45 (1961). https://doi.org/10.1007/bf00293853

  9. Rosenblatt, F.: Perceptron simulation experiments. Invest. Reporters Editors Conf. 42(3), 301–309 (1960). https://doi.org/10.1109/JRPROC.1960.287598

    Article  MathSciNet  Google Scholar 

  10. Minsky, M., Papert, S.: Perceptrons. MIT Press, Cambridge (1969). https://doi.org/10.7551/mitpress/11301.001.0001

  11. Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. C-21(4), 353–359 (1972). https://doi.org/10.1109/tc.1972.5008975

  12. Anderson, J.A.: A simple neural network generating an interactive memory. Math. Biosci. 14, 197–220 (1972). https://doi.org/10.1016/0025-5564(72)90075-2

    Article  MATH  Google Scholar 

  13. Grossberg, S.: Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biol. Cybern. 23, 121–134 (1976). https://doi.org/10.1007/bf00344744

  14. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982). https://doi.org/10.1007/bf00337288

    Article  MathSciNet  MATH  Google Scholar 

  15. Kohonen, T.: The self-organizing map. Neurocomputing 21, 1–6 (1998). https://doi.org/10.1109/5.58325

    Article  MATH  Google Scholar 

  16. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982). https://doi.org/10.1201/9780429500459-2

  17. Fukushima, K., Miyake, S., Ito, T.: Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Trans. Syst. Man Cybern. 13, 826–834 (1983). https://doi.org/10.1109/tsmc.1983.6313076

    Article  Google Scholar 

  18. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962). https://doi.org/10.1113/jphysiol.1962.sp006837

    Article  Google Scholar 

  19. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by backpropagating errors. Nature 323, 533–536 (1986). https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  20. Granichin, O., Volkovich, V., Toledano-Kitai, D.: Randomized algorithms in automatic control and data mining. Springer (2015). https://doi.org/10.1007/978-3-642-54786-7

  21. Angelini, L., Carlo, F., Marangi, C., Pellicoro, M., Nardullia, M., Stramaglia, S.: Clustering data by inhomogeneous chaotic map lattices. Phys. Rev. Lett. 85, 78–102 (2000). https://doi.org/10.1103/physrevlett.85.554

    Article  Google Scholar 

  22. LeCun, Y.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  23. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1557 (2006). https://doi.org/10.1162/neco.2006.18.7.1527

    Article  MathSciNet  MATH  Google Scholar 

  24. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  25. Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A.: Sequential deep learning for human action recognition. In: 2nd International Workshop on Human Behavior Understanding (HBU). Lecture Notes in Computer Science, vol. 7065, pp. 29–39. Springer, Amsterdam, Netherlands (2011). https://doi.org/10.1007/978-3-642-25446-8_4

  26. Ambraseys, N.N.: The prediction of earthquake peak ground acceleration in Europe. Earthq. Eng. Struct. Dyn. 24, 467–490 (1995). https://doi.org/10.1002/eqe.4290240402

    Article  Google Scholar 

  27. Zaalishvili, V.B.: Measurement and recording equipment for seismic microzoning. Meas. Tech. 58(12), 1297–1303 (2016). https://doi.org/10.1007/s11018-016-0888-2

    Article  Google Scholar 

  28. Shempelev, A.G., Zaalishvili, V.B., Kukhmazov, S.U.: Deep structure of the western part of the Central Caucasus from geophysical data. Geotectonics 51(5), 479–488 (2017). https://doi.org/10.1134/S0016852117050053

    Article  Google Scholar 

  29. Zaalishvili, V.B., Morozov, F.S., Tuaev, G.E.: Integrated Instrumental monitoring of hazardous geological processes under the kazbek volcanic center. Int. J. GEOMATE 15(47), 158–163 (2018). https://doi.org/10.21660/2018.47.20218

    Article  Google Scholar 

  30. Chotchaev, K.O., Zaalishvili, V.B., Magkoev, T.T., Melkov, D.A., Nikolaev, A.V., Svalova, V.B., Arkhireeva, I.G., Dzeranov, B.V.: Physical fields as derivative of deformation of rock massif and technology of their monitoring. In: Advances in Engineering Research 182. VIII All-Russian Science and Technology Conference “Contemporary Issues of Geology, Geophysics and Geoecology of the North Caucasus” (CIGGG 2018), pp. 62–67. Vlaikavkaz (2019). https://doi.org/10.2991/ciggg-18.2019.12

  31. Chotchaev, K.O., Zaalishvili, V.D., Shempelev, A.G., Melkov, D.A., Burdzieva, O.G., Parada, S.G., Dzeranov, B.V., Dzhgamadze, A.K.: Geodynamic situation in central caucasus and structural complexes on depth section of genaldon profile. In: Advances in Engineering Research 182. VIII All-Russian Science and Technology Conference “Contemporary Issues of Geology, Geophysics and Geoecology of the North Caucasus” (CIGGG 2018), pp. 325–331, Vladikavkaz (2019). https://doi.org/10.2991/ciggg-18.2019.62

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav Zaalishvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaalishvili, V., Melkov, D. (2021). Regional Attenuation Relationships: Regression vs Neural Network Analysis. In: Murgul, V., Pukhkal, V. (eds) International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019. EMMFT 2019. Advances in Intelligent Systems and Computing, vol 1259. Springer, Cham. https://doi.org/10.1007/978-3-030-57453-6_7

Download citation

Publish with us

Policies and ethics