Skip to main content

Abstract

This paper consider a comparison of granular and open cell foam filters based on the models of filters with different sizes of granules and cells. For all models, the porosity parameter of the medium remained fixed (ε = 0.44). Due to the random location of the cells to eliminate errors, the calculation results for each sample were averaged over the calculations of five different geometries with the same parameters. The results of numerical calculations are in a good agreement with the experimental data of the pressure drop value in the filters. It was found that open cell foam material shows the maximum pressure drop, and the efficiency of particle deposition in the model of open cell foam filter is higher in comparison with the model of granular filter. The largest cell size provides the maximum value of the filter quality factor in the case of open cell foam material, the reverse pattern is observed in the case of granular filter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259 (1996). https://doi.org/10.1103/revmodphys.68.1259

    Article  Google Scholar 

  2. Cai, J., Dong, H., Fu, W.: Study on particle flow in shaft moving beds. J. Northeast. Univ. Nat. Sci. 28, 1599 (2007)

    Google Scholar 

  3. Tien, C., Ramarao, B.V.: Macroscopic description of fixed-bed granular filtration. In: Brenner, H. (ed.) Granular Filtration of Aerosols and Hydrosols. Butterworth Series in Chemical Engineering, Boston, MA, pp. 17–45 (1989). https://doi.org/10.1016/b978-1-85617-458-9.x5000-3

  4. El-Hedok, I.A., Whitmer, L., Brown, R.C.: The influence of granular flow rate on the performance of a moving bed granular filter. Powder Technol. 214, 69–76 (2011). https://doi.org/10.1016/j.powtec.2011.07.037

    Article  Google Scholar 

  5. Altmann, J., Rehfeld, D., Träder, K., Sperlich, A., Jekel, M.: Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal. Water Res. 92, 131–139 (2016). https://doi.org/10.1016/j.watres.2016.01.051

    Article  Google Scholar 

  6. Hsu, C.J., Hsiau, S.S.: A study of filtration performance in a cross-flow moving granular bed filter: the influence of gas flow uniformity. Powder Technol. 274, 20–27 (2015). https://doi.org/10.1016/j.powtec.2015.01.006

    Article  Google Scholar 

  7. Hsu, C.J., Hsiau, S.S., Chen, Y.S., Smid, J.: Investigation of the gas inlet velocity distribution in a fixed granular bed filter. Adv. Powder Technol. 21, 614–622 (2010). https://doi.org/10.1016/j.apt.2010.04.001

    Article  Google Scholar 

  8. Xiao, G., Wang, X., Zhang, J., Ni, M., Gao, X., Luo, Z., Cen, K.: Granular bed filter: a promising technology for hot gas clean-up. Powder Technol. 244, 93–99 (2013). https://doi.org/10.1016/j.powtec.2013.04.003

    Article  Google Scholar 

  9. Smolders, K., Baeyens, J.: Elutriation of fines from gas fluidized beds: mechanisms of elutriation and effect of freeboard geometry. Powder Technol. 92, 35–46 (1997). https://doi.org/10.1016/s0032-5910(97)03214-2

    Article  Google Scholar 

  10. Çarpinlioğlu, M.Ö., Özahi, E.: A simplified correlation for fixed bed pressure drop. Powder Technol. 187, 94–101 (2008). https://doi.org/10.1016/j.powtec.2008.01.027

    Article  Google Scholar 

  11. Kuo, Y.M., Huang, S.H., Lin, W.Y., Hsiao, M.F., Chen, C.C.: Filtration and loading characteristics of granular bed filters. J. Aerosol Sci. 41, 223–229 (2010). https://doi.org/10.1016/j.jaerosci.2009.09.011

    Article  Google Scholar 

  12. Solovev, S.A., Soloveva, O.V., Popkova, O.S.: Numerical simulation of the motion of aerosol particles in open cell foam materials. Russ. J. Phys. Chem. 92, 601–604 (2018). https://doi.org/10.1134/s0036024418030275

    Article  Google Scholar 

  13. Choi, J.H., Choi, K.B., Kim, P., Shun, D.W., Kim, S.D.: The effect of temperature on particle entrainment rate in a gas fluidized bed. Powder Technol. 92, 127–133 (1997). https://doi.org/10.1016/s0032-5910(97)03225-7

    Article  Google Scholar 

  14. Wey, M.Y., Chen, K.H., Liu, K.Y.: The effect of ash and filter media characteristics on particle filtration efficiency in fluidized bed. J. Hazard. Mater. 121, 175–181 (2005). https://doi.org/10.1016/j.jhazmat.2005.02.005

    Article  Google Scholar 

  15. Liu, K.Y., Wey, M.Y.: Filtration of nano-particles by a gas–solid fluidized bed. J. Hazard. Mater. 147, 618–624 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.058

    Article  Google Scholar 

  16. Soloveva, O.V., Solovev, S.A., Khusainov, R.R.: Evaluation of the efficiency of prefilter models using numerical simulation. J. Phys. Conf. Ser. 1399, 022059 (2019). https://doi.org/10.1088/1742-6596/1399/2/022059

  17. Soloveva, O.V., Solovev, S.A., Khusainov, R.R., Shubina, A.S.: Investigation of the effect of material’s cell size with the fixed porosity on the efficiency of aerosol particle deposition. J. Phys. Conf. Ser. 1158, 042023 (2019). https://doi.org/10.1088/1742-6596/1158/4/042023

  18. Soloveva, O.V., Solovev S.A., Khusainov R.R.: Evaluation of the efficiency of prefilter models using numerical simulationю. J. Phys. Conf. Ser. 1399, 022059 (2019). https://doi.org/10.1088/1742-6596/1399/2/022059

  19. Paenpong, C., Pattiya, A.: Filtration of fast pyrolysis char fines with a cross-flow moving-bed granular filter. Powder Technol. 245, 233–240 (2013). https://doi.org/10.1016/j.powtec.2013.04.044

    Article  Google Scholar 

  20. Yang, G., Zhou, J.: Experimental study on a new dual-layer granular bed filter for removing particulates. J. China Univ. Min. Technol. 17, 201–204 (2007). https://doi.org/10.1016/s1006-1266(07)60072-8

    Article  Google Scholar 

  21. McBrayer, R.L., Wysocki, D.C.: Polyurethane Foams Formulation and Manufacture. Program Division, Technomic Publishing Company, Incorporated (1998)

    Google Scholar 

  22. Gunashekar, S., Abu-Zahra, N.: Characterization of functionalized polyurethane foam for lead ion removal from water. Int. J. Polym. Sci. 2014, 7 (2014). https://doi.org/10.1155/2014/570309

    Article  Google Scholar 

  23. Merentsov, N.A., Balashov, V.A., Bokhan, S.A., Nefed’eva, E.E., Tezikov, D.A., Groshev, V.V.: Modeling and calculation of flow filter. IOP Conf. Ser. Earth Environ. Sci. 224, 012041 (2019). https://doi.org/10.1088/1755-1315/224/1/012041

    Article  Google Scholar 

  24. Gu, D., Schüth, F.: Synthesis of non-siliceous mesoporous oxides. Chem. Soc. Rev. 43, 313–344 (2014). https://doi.org/10.1039/c3cs60155b

    Article  Google Scholar 

  25. Ariga, K., Vinu, A., Yamauchi, Y., Ji, Q., Hill, J.P.: Nanoarchitectonics for mesoporous materials. Bull. Chem. Soc. Jpn 85, 1–32 (2011). https://doi.org/10.1246/bcsj.20110162

    Article  Google Scholar 

  26. Li, W., Wu, Z., Wang, J., Elzatahry, A.A., Zhao, D.: A perspective on mesoporous TiO2 materials. Chem. Mater. 26, 287–298 (2013). https://doi.org/10.1021/cm4014859

    Article  Google Scholar 

  27. Hwang, J.J., Hwang, G.J., Yeh, R.H., Chao, C.H.: Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams. J. Heat Trans. 124, 120–129 (2002). https://doi.org/10.1115/1.1416690

    Article  Google Scholar 

  28. Boomsma, K., Poulikakos, D., Zwick, F.: Metal foams as compact high performance heat exchangers. Mech. Mater. 35, 1161–1176 (2003). https://doi.org/10.1016/j.mechmat.2003.02.001

    Article  Google Scholar 

  29. Boomsma, K., Poulikakos, D.: The effects of compression and pore size variations on the liquid flow characteristics in metal foams. J. Fluids Eng. 124, 263–272 (2002). https://doi.org/10.1115/1.1429637

    Article  Google Scholar 

  30. Hilyard, N.C., Collier, P.: A structural model for air flow in flexible PUR foams. Cell. Polym. 6, 9–26 (1987)

    Google Scholar 

  31. Mills, N.J.: The wet Kelvin model for air flow through open-cell polyurethane foams. J. Mater. Sci. 40, 5845–5851 (2005)

    Article  Google Scholar 

  32. Du Plessis, P., Montillet, A., Comiti, J., Legrand, J.: Pressure drop prediction for flow through high porosity metallic foams. Chem. Eng. Sci. 49, 3545–3553 (1994). https://doi.org/10.1016/0009-2509(94)00170-7

    Article  Google Scholar 

  33. Boomsma, K., Poulikakos, D., Ventikos, Y.: Simulations of flow through open cell metal foams using an idealized periodic cell structure. Int. J. Heat Fluid Flow 24, 825–834 (2003). https://doi.org/10.1016/j.ijheatfluidflow.2003.08.002

    Article  Google Scholar 

  34. Hoferer, J., Lehmann, M.J., Hardy, E.H., Meyer, J., Kasper, G.: Highly resolved determination of structure and particle deposition in fibrous filters by MRI. Chem. Eng. Technol. 29, 816–819 (2006). https://doi.org/10.1002/ceat.200600047. Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology

    Article  Google Scholar 

  35. Lehmann, M.J., Hardy, E.H., Meyer, J., Kasper, G.: MRI as a key tool for understanding and modeling the filtration kinetics of fibrous media. Magn. Reson. Imaging 23, 341–342 (2005). https://doi.org/10.1016/j.mri.2004.11.048

    Article  Google Scholar 

  36. Charvet, A., Du Roscoat, S.R., Peralba, M., Bloch, J.F., Gonthier, Y.: Contribution of synchrotron X-ray holotomography to the understanding of liquid distribution in a medium during liquid aerosol filtration. Chem. Eng. Sci. 66, 624–631 (2011). https://doi.org/10.1016/j.ces.2010.11.008

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Russian Science Foundation under grant № 19-71-00100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Soloveva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soloveva, O. (2021). Study of Aerosol Motion in Granular and Foam Filters with Equal Porosity of the Structure. In: Murgul, V., Pukhkal, V. (eds) International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019. EMMFT 2019. Advances in Intelligent Systems and Computing, vol 1259. Springer, Cham. https://doi.org/10.1007/978-3-030-57453-6_61

Download citation

Publish with us

Policies and ethics