Skip to main content

Abstract

The use of velocity and temperature distributions in moving fluids is of theoretical and practical significance. Designing efficient heat exchange equipment, development of modes of thermal and thermomechanical processing of products, determination of heat losses in pipeline systems is related to the need to determine the velocity and temperature fields in the flows of fluids and gases. This article presents the development results of an approximate analytical method for mathematical modeling of heat transfer process in laminar flows. The main provisions of the method are demonstrated using the example of solving the heat exchange problem in a plane parallel channel. The combined use of the thermal balance integral method and location method allowed obtaining a simple in form analytical solution of the problem under study. Note that accuracy of the solutions obtained depends on the number of approximations performed, i.e. on the number of N (points of a spatial variable), in which the initial differential equation is satisfied exactly. So, already at \( N = 2 \), a ratio error is not more than 10% in the range of changes along the longitudinal coordinate \( 0.1 \le\upeta < \infty \) and at \( N = 10 \) decreases to 1%. Analytical form of the resulting solutions allows one to analyze isotherm fields inside the channel, to calculate the dimensionless values of the average mass temperature, the Nusselt number, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Pergamon Press, Headington Hill Hall (1987)

    Google Scholar 

  2. Kays, W.M., Crawford, M.E.: Convective Heat and Mass Transfer, 2nd edn. McGraw–Hill, New York (1993)

    Google Scholar 

  3. Sneddon, I.N.: Fourier Transforms. Dover Publications, New York (1995)

    MATH  Google Scholar 

  4. Cherati, D.Y., Ghasemi-Fare, O.: Analyzing transient heat and moisture transport surrounding a heat source in unsaturated porous media using the Green’s function. Geothermics 81, 224–234 (2019). https://doi.org/10.1016/j.geothermics.2019.04.012

    Article  Google Scholar 

  5. Tranter, C.J.: Integral Transforms in Mathematical Physics. Methuen, London (1966)

    MATH  Google Scholar 

  6. Tsoi, P.V.: System Methods for Calculating Boundary-Value Problems of Heat and Mass Transfer, 3rd edn. Publishing House MPEI, Moscow (2005)

    Google Scholar 

  7. Christie, I., Griffiths, D.F., Mitchell, A.R., Zienkiewicz, O.C.: Finite element methods for second order differential equations with significant first derivatives. Int. J. Numer. Meth. Eng. 10(6), 1389–1396 (1976)

    Article  MathSciNet  Google Scholar 

  8. Layeni, O.P., Johnson, J.V.: Hybrids of the heat balance integral method. Appl. Math. Comput. 218(14), 7431–7444 (2012). https://doi.org/10.1016/j.amc.2012.01.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Mitchell, S.L., Myers, T.G.: Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions. Int. J. Heat Mass Transf. 53(17–18), 3540–3551 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.015

    Article  MATH  Google Scholar 

  10. Mitchell, S.L., Myers, T.G.: Application of standard and refined heat balance integral methods to one-dimensional Stefan problems. SIAM Rev. 52(1), 57–86 (2010). https://doi.org/10.1137/080733036

    Article  MathSciNet  MATH  Google Scholar 

  11. Novozhilov, V.: Application of heat-balance integral method to conjugate thermal explosion. Therm. Sci. 13(2), 73–80 (2009). https://doi.org/10.2298/tsci0902073n

    Article  Google Scholar 

  12. Dutta, S., Sil, A.N., Saha, J.K., Mukherjee, T.K.: Ritz variational method for the high-lying non-autoionizing doubly excited 1,3Fe states of two-electron atoms. Int. J. Quantum Chem. 118(14), e25577 (2017). https://doi.org/10.1002/qua.25577

    Article  Google Scholar 

  13. Lotfi, A., Yousef, S.A.: A generalization of ritz-variational method for solving a class of fractional optimization problems. J. Optim. Theory Appl. 174(1), 238–255 (2017). https://doi.org/10.1007/s10957-016-0912-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Falk, R.S.: Ritz method based on a complementary variational principle. Revue francaise d automatique, informatique, recherché operationnelle 10(8), 39–48 (1976). https://doi.org/10.1051/m2an/197610r200391

    Article  MathSciNet  MATH  Google Scholar 

  15. Kantorovich, L.V.: A method for the approximate solution of partial differential equations. Doklady AN SSSR 2(9), 532–534 (1934)

    Google Scholar 

  16. Rao, T.D., Chakraverty, S.: Modeling radon diffusion equation in soil pore matrix by using uncertainty based orthogonal polynomials in Galerkin’s method. Coupled Syst. Mech. 6(4), 487–499 (2017). https://doi.org/10.12989/csm.2017.6.4.487

    Article  Google Scholar 

  17. Nourgaliev, R., Luo, H., Weston, B., Anderson, A., Schofield, S., Dunn, T., Delplanque, J.R.: Fully-implicit orthogonal reconstructed discontinuous Galerkin method for fluid dynamics with phase change. J. Comput. Phys. 305, 964–996 (2016). https://doi.org/10.1016/j.jcp.2015.11.004

    Article  MathSciNet  MATH  Google Scholar 

  18. Belytschko, T., Lu, Y.Y., Gu, L.: Element free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994). https://doi.org/10.1002/nme.1620370205

    Article  MathSciNet  MATH  Google Scholar 

  19. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001). https://doi.org/10.1137/s0036142901384162

    Article  MathSciNet  MATH  Google Scholar 

  20. Letelier, M.F., Hinojosa, C.B., Siginer, D.A.: Analytical solution of the Graetz problem for non–linear viscoelastic fluids in tubes of arbitrary cross–section. Int. J. Therm. Sci. 111, 369–378 (2017). https://doi.org/10.1016/j.ijthermalsci.2016.05.034

    Article  Google Scholar 

  21. Bennett, T.D.: Correlations for the Graetz problem in convection. Int. J. Heat Mass Transf. 136, 832–841 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.006

    Article  Google Scholar 

  22. Eremin, A.V.: Study of thermal exchange with liquid flowing in a cylindrical channel. In: International Science and Technology Conference, pp. 1–5 (2019). https://doi.org/10.1109/EastConf.2019.8725422

  23. Eremin, A.V., Kudinov, V.A., Stefanyuk, E.V.: Heat exchange in a cylindrical channel with stabilized laminar fluid flow. Fluid Dyn. 53, 29–39 (2018). https://doi.org/10.1134/s0015462818040171

    Article  MathSciNet  MATH  Google Scholar 

  24. Kudinov, V.A., Eremin, A.V., Kudinov, I.V.: The development and investigation of a strongly non–equilibrium model of heat transfer in fluid with allowance for the spatial and temporal non-locality and energy dissipation. Thermophys. Aeromech. 24(6), 901–907 (2017). https://doi.org/10.1134/s0869864317060087

    Article  Google Scholar 

  25. Fedorov, F.M.: Boundary Method for Solving Applied Problems of Mathematical Physics. Nauka, Novosibirsk (2000)

    MATH  Google Scholar 

  26. Eremin, A.V., Kudinov, I.V., Dovgyallo, A.I., Kudinov, V.A.: Heat exchange in a liquid with energy dissipation. J. Eng. Phys. Thermophys. 90(5), 1234–1242 (2017). https://doi.org/10.1007/s10891-017-1679-6

    Article  Google Scholar 

  27. Kudinov, I.V., Kudinov, V.A., Kotova, E.V., Eremin, A.V.: On one method of solving nonstationary boundary-value problems. J. Eng. Phys. Thermophys. 90(6), 1317–1327 (2017). https://doi.org/10.1007/s10891-017-1689-4

    Article  Google Scholar 

  28. Petuhov, B.S.: Heat Transfer and Resistance During Laminar Fluid Flow in Pipes. Energy, Moscow (1967)

    Google Scholar 

Download references

Acknowledgment

The reported study was funded by RFBR, project number 20-38-70021 and the Council on grants of the President of the Russian Federation as part of the research, project number MK-2614.2019.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Gubareva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eremin, A., Gubareva, K. (2021). Approximate Analytical Method for Solving the Heat Transfer Problem in a Flat Channel. In: Murgul, V., Pukhkal, V. (eds) International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019. EMMFT 2019. Advances in Intelligent Systems and Computing, vol 1259. Springer, Cham. https://doi.org/10.1007/978-3-030-57453-6_30

Download citation

Publish with us

Policies and ethics