Skip to main content

Factors Determining Thermohydraulic Efficiency of Liquid Cooling Systems for Internal Combustion Engines

  • Conference paper
  • First Online:
International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019 (EMMFT 2019)

Abstract

The cooling system is one of the most important systems of internal combustion engines and has a significant impact on the resource, economic and ecological performance of the engine. In order to assess the performance of the cooling system, it is proposed to use the energy coefficient of thermohydraulic efficiency. The main factors affecting the thermohydraulic efficiency of the cooling system are determined, suggestions for ensuring its improvement are made. The most significant factor affecting the thermohydraulic efficiency of the cooling system is the specific heat capacity of the coolant. An increase in the thermohydraulic efficiency of the ICE cooling system due to an increase in the temperature difference of the coolant at the engine outlet and its entrance is possible only with intensive heat removal from the coolant in the cooler. This requires further research and development on the modernization of heat exchangers for ICE cooling systems and optimization of their operation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Internal Combustion Engines: Performance, Fuel Economy and Emissions. Editor-in-Chief IMechE. Woodhead (2013)

    Google Scholar 

  2. Woodyard, D.: Pounder’s Marine Diesel Engines and Gas Turbines. Butterworth-Heinemann, Oxford (2014)

    Google Scholar 

  3. Advanced Direct Injection Combustion Engine Technologies and Development Diesel Engines. Editor-in-Chief Hua Zhao. Woodhead Publishing (2010)

    Google Scholar 

  4. Xin, Q.: Diesel Engine System Design. Woodhead Publishing, Cambridge (2011)

    Book  Google Scholar 

  5. Okubo, M., Kuwahara, T.: New Technologies for Emission Control in Marine Diesel Engines. Butterworth-Heinemann, Oxford (2019)

    Google Scholar 

  6. Zhukov, V.: Outlook of improving of ship diesel engine’s cooling system. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala SO Makarova 4(32), 131–137 (2015). https://doi.org/10.21821/2309-5180-2015-7-4-131-137

    Article  Google Scholar 

  7. Zhukov, V.A., Pulyaev, A.A., Melnik, O.V., Nyrkov, A.P.: Ensuring the permissible temperature state of parts of the cylinder-piston group of forced diesels. In: 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, pp. 385–388. https://doi.org/10.1109/eiconrus.2019.8657247

  8. Bezjukov, O., Zhukov, V., Pulyaev, A.: The Choice Of Cooling Parameters For Marine Diesel Engines. Vestnik Gosudarstvennogo Universiteta Morskogo I Rechnogo Flota Imeni Admirala S.O. Makarova 2(48), 379–389 (2018). https://doi.org/10.21821/2309-5180-2018-10-2-379-389

    Article  Google Scholar 

  9. Zhukov, V.A., Zhelezniak, A.A., Bezmennikova, L.N., Erofeev, V.L.: Diagnosis of thermal processes in motors of the electrical objects. J. Phys. Conf. Ser. 803(1), 012184. https://doi.org/10.1088/1742-6596/803/1/012184

  10. Zhukov, V.A., Sherban, S.A., Melnik, O.V., Sokolov, S.S., Kolesnichenko, S.V.: Improvement of methods and means of thermal control of ship power plants. In: 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, pp. 389–392. https://doi.org/10.1109/eiconrus.2019.8656799

  11. Bezyukov, O.K., Zhukov, V.A., Timofeev, V.N.: Sovremennaya koncepciya regulirovaniya oxlazhdeniya sudovy`x dizelej. Vestnik GUMRF imeni admirala S.O. Makarova. 3(31), 93–103 (2015). https://doi.org/10.21821/2309-5180-2015-7-3-93-103

    Article  Google Scholar 

  12. Zhukov, V., Melnik, O., Logunov, N., Chernyi, S.: Regulation and control in cooling systems of internal combustion engines. E3S Web Conf. 135, 02015. https://doi.org/10.1051/e3sconf/201913502015

  13. Nahim, H.M., Younes, R., Shraim, H., Ouladsine, M.: Modeling with fault integration of the cooling and the lubricating systems in marine diesel engine: experimental validation. IFAC-PapersOnLine 49(11), 570–575 (2016). https://doi.org/10.1016/j.ifacol.2016.08.083

    Article  Google Scholar 

  14. Gholinia, M., Pourfallah, M., Chamani, H.R.: Numerical investigation of heat transfers in the water jacket of heavy duty diesel engine by considering boiling phenomenon. Case Stud. Therm. Eng. 12, 497–509 (2018). https://doi.org/10.1016/j.csite.2018.07.003

    Article  Google Scholar 

  15. Pierce, D., Haynes, A., Hughes, J., Graves, R., Daniel, C.: High temperature materials for heavy duty diesel engines: historical and future trends. Prog. Mater Sci. 103, 109–179 (2019). https://doi.org/10.1016/j.pmatsci.2018.10.004

    Article  Google Scholar 

  16. Taymaz, I., Çakır, K., Mimaroglu, A.: Experimental study of effective efficiency in a ceramic coated diesel engine. Surf. Coat. Technol. 200(1–4), 1182–1185 (2005). https://doi.org/10.1016/j.surfcoat.2005.02.049

    Article  Google Scholar 

  17. Taymaz, I.: The effect of thermal barrier coatings on diesel engine performance. Surf. Coat. Technol. 201(9–11), 5249–5252 (2017). https://doi.org/10.1016/j.surfcoat.2006.07.123

    Article  Google Scholar 

  18. Taymaz, I.: An experimental study of energy balance in low heat rejection diesel engine. Energy 31(2–3), 364–371 (2006). https://doi.org/10.1016/j.energy.2005.02.004

    Article  Google Scholar 

  19. Zegenhagen, M.T., Ziegler, F.: Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines. Energy 160, 221–230 (2015). https://doi.org/10.1016/j.apenergy.2015.09.057

    Article  Google Scholar 

  20. Momeni, S.M., Salehi, G., Nimvari, M.E.: Modeling and thermoeconomic optimization of marine diesel charge air cooler. Energy 162, 753–763 (2018). https://doi.org/10.1016/j.energy.2018.08.092

    Article  Google Scholar 

  21. Mezher, H., Chalet, D., Migaud, J., Chesse, P.: The application of a wave action design technique with minimal cost on a turbocharged engine equipped with water cooled charge air cooler aimed for energy management. Energy Procedia 36, 948–957 (2013). https://doi.org/10.1016/j.egypro.2013.07.108

    Article  Google Scholar 

  22. Dere, C., Deniz, C.: Load optimization of central cooling system pumps of a container ship for the slow steaming conditions to enhance the energy efficiency. J. Cleaner Prod. 222, 206–217 (2019). https://doi.org/10.1016/j.jclepro.2019.03.030

    Article  Google Scholar 

  23. Cipollone, R., Battista, D.D.: Sliding vane rotary pump in engine cooling system for automotive sector. Appl. Therm. Eng. 76, 157–166 (2015). https://doi.org/10.1016/j.applthermaleng.2014.11.001

    Article  Google Scholar 

  24. Cipollone, R., Bianchi, C., Battista, D.D., Fatigati, F.: Fuel economy benefits of a new engine cooling pump based on sliding vane technology with variable eccentricity. Energy Procedia 82, 265–272 (2015). https://doi.org/10.1016/j.egypro.2015.12.032

    Article  Google Scholar 

  25. Yih, J., Wang, H.: Experimental characterization of thermal-hydraulic performance of a microchannel heat exchanger for waste heat recovery. Energy Convers. Manag. 204, 112309 (2020). https://doi.org/10.1016/j.enconman.2019.112309

    Article  Google Scholar 

  26. Wang, H., Peterson, R.B.: Performance enhancement of a thermally activated cooling system using microchannel heat exchangers. Appl. Therm. Eng. 31(14–15), 2951–2962 (2011). https://doi.org/10.1016/j.applthermaleng.2011.05.026

    Article  Google Scholar 

  27. Zhu, Y., Li, W., Sun, G., Li, H.: Thermo-economic analysis based on objective functions of an organic Rankine cycle for waste heat recovery from marine diesel engine. Energy 158, 343–356 (2018). https://doi.org/10.1016/j.energy.2018.06.047

    Article  Google Scholar 

  28. Hoseini, S.S., Najafi, G., Ghobadian, B.: Experimental and numerical investigation of heat transfer and turbulent characteristics of a novel EGR cooler in diesel engine. Appl. Therm. Eng. 108, 1344–1356 (2016). https://doi.org/10.1016/j.applthermaleng.2016.08.018

    Article  Google Scholar 

  29. Aly, W.I.A., Abdo, M., Bedair, G., Hassaneen, A.E.: Thermal performance of a diffusion absorption refrigeration system driven by waste heat from diesel engine exhaust gases. Appl. Therm. Eng. 114, 621–630 (2017). https://doi.org/10.1016/j.applthermaleng.2016.12.019

    Article  Google Scholar 

  30. Aydin, H.: Combined effects of thermal barrier coating and blending with diesel fuel on usability of vegetable oils in diesel engines. Appl. Therm. Eng. 51(1–2), 623–629 (2013). https://doi.org/10.1016/j.applthermaleng.2012.10.030

    Article  Google Scholar 

  31. Aydin, S., Sayin, C., Aydin, H.: Investigation of the usability of biodiesel obtained from residual frying oil in a diesel engine with thermal barrier coating. Appl. Therm. Eng. 80, 212–219 (2015). https://doi.org/10.1016/j.applthermaleng.2015.01.061

    Article  Google Scholar 

  32. Han, G., Yao, A., Yao, C., Wang, Q., Liu, M.: Theoretical and experimental investigations on energy balance on DMDF engine. Fuel 164, 393–402 (2016)

    Article  Google Scholar 

  33. Koch. F.W., Haubner, F.G.: Cooling SYSTEM DEVELOPMENT AND OPTIMIZATION. SAE Technical Paper Series, 15 (2000). https://doi.org/10.1016/j.fuel.2015.10.024

  34. Akhiani, H., Metselaar, S.C.: A comprehensive review on graphene nanofluids: recent research, development and applications. Energy Convers. Manag. 111, 466–487 (2016)

    Article  Google Scholar 

  35. Goharshadi, E., Ahmadzadeh, H., Samiee, S., Hadadian, M.: Nanofluids for heat transfer enhancement. Phys. Chem. Res. 1(1), 1–33 (2013). https://doi.org/10.1016/j.enconman.2016.01.004

    Article  Google Scholar 

  36. Shanthi, R., Shanmuga Sundaram, A., Velraj, R.: Heat transfer enhancement using nanofluids. Therm. Sci. 16(2), 423–444 (2012). https://doi.org/10.2298/TSCI110201003S

    Article  Google Scholar 

  37. Lam, P.A.K., Prakash, K.A.: Thermodynamic investigation and multi-objective optimization for jet impingement cooling system with Al2O3/water nanofluid. Energy Convers. Manag. 111, 38–56 (2016). https://doi.org/10.1016/j.enconman.2015.12.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Zhukov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhukov, V., Erofeev, V., Melnik, O. (2021). Factors Determining Thermohydraulic Efficiency of Liquid Cooling Systems for Internal Combustion Engines. In: Murgul, V., Pukhkal, V. (eds) International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019. EMMFT 2019. Advances in Intelligent Systems and Computing, vol 1258. Springer, Cham. https://doi.org/10.1007/978-3-030-57450-5_40

Download citation

Publish with us

Policies and ethics