Skip to main content

The Oncogenic Role of Hepatitis C Virus

  • Chapter
  • First Online:
Viruses and Human Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 217))

Abstract

Persistent infection with hepatitis C virus (HCV) is a major risk factor for hepatocellular carcinoma (HCC). Accumulating evidence suggests that not only inflammation and subsequent fibrosis but also HCV itself are associated with hepatocarcinogenesis. To date, studies using transgenic mouse and cell-culture models, in which HCV proteins are expressed, indicate the direct pathogenicity of HCV, including oncogenic activity. In particular, the core protein of HCV induces excessive oxidative stress by impairing the mitochondrial electron transfer system by disrupting the function of the molecular chaperone, prohibitin. HCV also modulates intracellular signaling pathways, including mitogen-activated protein kinase, promoting the proliferation of hepatocytes. In addition, HCV induces disorders in lipid and glucose metabolism, thereby accelerating the progression of liver fibrosis and the development of HCC. Due to the development of direct-acting antivirals, which was made possible by basic research, HCV can be eradicated from almost all infected patients. However, such patients can develop HCC long after eradication of HCV, suggesting the genetic and/or epigenetic changes induced by HCV may be persistent. These results enhance our understanding of the role of HCV in hepatocarcinogenesis and will facilitate the development of therapeutic and preventive strategies for HCV-induced HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonzi T, Agrati C, Costabile B, Cicchini C, Amicone L, Cavallari C, Rocca CD, Folgori A, Fipaldini C, Poccia F, Monica NL, Tripodi M (2004) Steatosis and intrahepatic lymphocyte recruitment in hepatitis C virus transgenic mice. J Gen Virol 85:1509–1520

    Article  PubMed  CAS  Google Scholar 

  • Atoom AM, Taylor NG, Russell RS (2014) The elusive function of the hepatitis C virus p7 protein. Virology 462–463:377–387

    Article  PubMed  CAS  Google Scholar 

  • Bach N, Thung SN, Schaffner F (1992) The histological features of chronic hepatitis C and autoimmune chronic hepatitis: a comparative analysis. Hepatology 15:572–577

    Article  PubMed  CAS  Google Scholar 

  • Boudreau HE, Emerson SU, Korzeniowska A, Jendrysik MA, Leto TL (2009) Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor beta-dependent manner: a new contributor to HCV-induced oxidative stress. J Virol 83(24):12934–12946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boulant S, Montserret R, Hope RG, Ratinier M, Targett-Adams P, Lavergne JP et al (2006) Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem 281:22236–22247

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Yang X, Huang L, Chi P (2013) The expression and clinical significance of PA28 γ in colorectal cancer. J Investig Med 61:1192–1196

    Article  PubMed  CAS  Google Scholar 

  • Diamond DL, Jacobs JM, Paeper B, Proll SC, Gritsenko MA, Carithers RL Jr et al (2007) Proteomic profiling of human liver biopsies: hepatitis C virus-induced fibrosis and mitochondrial dysfunction. Hepatology 46:649–657

    Article  PubMed  CAS  Google Scholar 

  • Farinati F, Cardin R, De Maria N, Della Libera G, Marafin C, Lecis E, Burra P, Floreani A, Cecchetto A, Naccarato R (1995) Iron storage, lipid peroxidation and glutathione turnover in chronic anti-HCV positive hepatitis. J Hepatol 22:449–456

    Article  PubMed  CAS  Google Scholar 

  • Frelin L, Brenndörfer ED, Ahlén G, Weiland M, Hultgren C, Alheim M, Glaumann H, Rozell B, Milich DR, Bode JG, Sällberg M (2006) The hepatitis C virus and immune evasion: non-structural 3/4A transgenic mice are resistant to lethal tumour necrosis factor alpha mediated liver disease. Gut 55:1475–1483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujita N, Sugimoto R, Ma N, Tanaka H, Iwasa M, Kobayashi Y, Kawanishi S, Watanabe S, Kaito M, Takei Y (2008) Comparison of hepatic oxidative DNA damage in patients with chronic hepatitis B and C. J Viral Hepat 15:498–507

    Article  PubMed  CAS  Google Scholar 

  • Hara Y, Yanatori I, Ikeda M, Kiyokage E, Nishina S, Tomiyama Y, Toida K, Kishi F, Kato N, Imamura M, Chayama K, Hino K (2014) Hepatitis C virus core protein suppresses mitophagy by interacting with parkin in the context of mitochondrial depolarization. Am J Pathol 184:3026–3039

    Article  PubMed  CAS  Google Scholar 

  • Honda A, Arai Y, Hirota N, Sato T, Ikegaki J, Koizumi T, Hatano M, Kohara M, Moriyama T, Imawari M, Shimotohno K, Tokuhisa T (1999) Hepatitis C virus structural proteins induce liver cell injury in transgenic mice. J Med Virol 59:281–289

    Article  PubMed  CAS  Google Scholar 

  • Houghton M, Weiner A, Han J, Kuo G, Choo QL (1991) Molecular biology of hepatitis C viruses. Implications for diagnosis, development and control of viral diseases. Hepatology 14:381–388

    Article  PubMed  CAS  Google Scholar 

  • Joyce MA, Walters KA, Lamb SE, Yeh MM, Zhu LF, Kneteman N, Doyle JS, Katze MG, Tyrrell DL (2009) HCV induces oxidative and ER stress, and sensitizes infected cells to apoptosis in SCID/Alb-uPA mice. PLoS Pathog 5:e1000291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kato J, Kobune M, Nakamura T, Kuroiwa G, Takada K, Takimoto R, Sato Y, Fujikawa K, Takahashi M, Takayama T, Ikeda T, Niitsu Y (2001) Normalization of elevated hepatic 8-hydroxy-2′-deoxyguanosine levels in chronic hepatitis C patients by phlebotomy and low iron diet. Cancer Res 61:8697–8702

    PubMed  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  PubMed  CAS  Google Scholar 

  • Kiyosawa K, Sodeyama T, Tanaka E, Gibo Y, Yoshizawa K, Nakano Y et al (1990) Interrelationship of blood transfusion, non-A, non-B hepatitis and hepatocellular carcinoma: analysis by detection of antibody to hepatitis C virus. Hepatology 12:671–675

    Article  PubMed  CAS  Google Scholar 

  • Ko KS, Tomasi ML, Iglesias-Ara A, French BA, French SW, Ramani K, Lozano JJ, Oh P, He L, Stiles BL, Li TW, Yang H, Martínez-Chantar ML, Mato JM, Lu SC (2010) Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. Hepatology 52:2096–2108

    Article  PubMed  CAS  Google Scholar 

  • Koike K (2005) Molecular basis of hepatitis C virus-associated hepatocarcinogenesis: lessons from animal model studies. Clin Gastroenterol Hepatol 3:S132–S135

    Article  PubMed  CAS  Google Scholar 

  • Koike K (2007) Hepatitis C virus contributes to hepatocarcinogenesis by modulating metabolic and intracellular signaling pathways. J Gastroenterol Hepatol 22(Suppl 1):S108–S111

    Article  PubMed  CAS  Google Scholar 

  • Koike K, Moriya K, Ishibashi K, Matsuura Y, Suzuki T, Saito I et al (1995) Expression of hepatitis C virus envelope proteins in transgenic mice. J Gen Virol 76:3031–3038

    Article  PubMed  CAS  Google Scholar 

  • Koike K, Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K et al (1997) Sialadenitis resembling Sjögren’s syndrome in mice transgenic for hepatitis C virus envelope genes. Proc Natl Acad Sci USA 94:233–236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Korenaga M, Wang T, Li Y, Showalter LA, Chan T, Sun J, Weinman SA (2005) Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem 280:37481–37488

    Article  PubMed  CAS  Google Scholar 

  • Lerat H, Honda M, Beard MR, Loesch K, Sun J, Yang Y et al (2002) Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 122:352–365

    Article  PubMed  CAS  Google Scholar 

  • Machida K, Cheng KT, Lai CK, Jeng KS, Sung VM, Lai MM (2006) Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J Virol 80:7199–7207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majumder M, Ghosh AK, Steele R, Zhou XY, Phillips NJ, Ray R, Ray RB (2002) Hepatitis C virus NS5A protein impairs TNF-mediated hepatic apoptosis, but not by an anti-FAS antibody, in transgenic mice. Virology 294:94–105

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Murphy LC, Nyomba BL, Murphy LJ (2005) Prohibitin: a potential target for new therapeutics. Trends Mol Med 11:192–197

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Taura K, Kodama Y, Schnabl B, Brenner DA (2008) Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology 48:1420–1429

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto H, Moriishi K, Moriya K, Murata S, Tanaka K, Suzuki T et al (2007) Hepatitis C virus core protein induces insulin resistance through a PA28γ-dependent pathway. J Virol 81:1727–1735

    Article  PubMed  CAS  Google Scholar 

  • Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi H, Fujie H, Shintani Y, Tsutsumi T, Shinzawa S, Makuuchi M, Kokudo N, Matsuura Y, Suzuki T, Miyamura T, Moriya K, Koike K (2005) Hepatitis C virus core protein exerts an inhibitory effect on suppressor of cytokine signaling (SOCS)-1 gene expression. J Hepatol 43:757–763

    Article  PubMed  CAS  Google Scholar 

  • Moradpour D, Penin F, Rice CM (2007) Replication of hepatitis C virus. Nat Rev Microbiol 5:453–463

    Article  PubMed  CAS  Google Scholar 

  • Moriishi K, Okabayashi T, Nakai K, Moriya K, Koike K, Murata S et al (2003) Proteasome activator PA28γ-dependent nuclear retention and degradation of hepatitis C virus core protein. J Virol 77:10237–10249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moriishi K, Mochizuki R, Moriya K, Miyamoto H, Mori Y, Abe T et al (2007) Critical role of PA28g in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci USA 104:1661–1666

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K, Matsuura Y et al (1997) Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 78:1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Matsuura Y et al (1998) Hepatitis C virus core protein induces hepatocellular carcinoma in transgenic mice. Nat Med 4:1065–1068

    Article  PubMed  CAS  Google Scholar 

  • Moriya K, Nakagawa K, Santa T, Shintani Y, Fujie H, Miyoshi H et al (2001) Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res 61:4365–4370

    PubMed  CAS  Google Scholar 

  • Moriya K, Miyoshi H, Shinzawa S, Tsutsumi T, Fujie H, Goto K, Shintani Y, Yotsuyanagi H, Koike K (2010) Hepatitis C virus core protein compromises iron-induced activation of antioxidants in mice and HepG2 cells. J Med Virol 82:776–792

    Article  PubMed  CAS  Google Scholar 

  • Naas T, Ghorbani M, Alvarez-Maya I, Lapner M, Kothary R, De Repentigny Y et al (2005) Characterization of liver histopathology in a transgenic mouse model expressing genotype 1a hepatitis C virus core and envelope proteins 1 and 2. J Gen Virol 86:2185–2196

    Article  PubMed  CAS  Google Scholar 

  • Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA, Back JW et al (2000) Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 19:2444–2451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishina S, Hino K, Korenaga M, Vecchi C, Pietrangelo A, Mizukami Y, Furutani T, Sakai A, Okuda M, Hidaka I, Okita K, Sakaida I (2008) Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription. Gastroenterology 134:226–238

    Article  PubMed  CAS  Google Scholar 

  • Oguro T, Hayashi M, Nakajo S, Numazawa S, Yoshida T (1998) The expression of heme oxygenase-1 gene responded to oxidative stress produced by phorone, a glutathione depletor, in the rat liver; the relevance to activation of c-jun n-terminal kinase. J Pharmacol Exp Ther 287:773–778

    PubMed  CAS  Google Scholar 

  • Okamura T, Taniguchi S, Ohkura T, Yoshida A, Shimizu H, Sakai M, Maeta H, Fukui H, Ueta Y, Hisatome I, Shigemasa C (2003) Abnormally high expression of proteasome activator-gamma in thyroid neoplasm. J Clin Endocrinol Metab 88:1374–1383

    Article  PubMed  CAS  Google Scholar 

  • Pasquinelli C, Shoenberger JM, Chung J et al (1997) Hepatitis C virus core and E2 protein expression in transgenic mice. Hepatology 25:719–727

    Article  PubMed  CAS  Google Scholar 

  • Perlemuter G, Sabile A, Letteron P, Vona G, Topilco A, Koike K et al (2002) Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. FASEB J 16:185–194

    Article  PubMed  CAS  Google Scholar 

  • Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45:529–538

    Article  PubMed  Google Scholar 

  • Piccoli C, Scrima R, Quarato G, D’Aprile A, Ripoli M, Lecce L et al (2007) Hepatitis C virus protein expression causes calcium-mediated mitochondrial bioenergetic dysfunction and nitro-oxidative stress. Hepatology 46:58–65

    Article  PubMed  CAS  Google Scholar 

  • Saito I, Miyamura T, Ohbayashi A, Harada H, Katayama T, Kikuchi S et al (1990) Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc Natl Acad Sci USA 87:6547–6549

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Kimura S, Moriya K et al (2004) Hepatitis C virus and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology 126:840–848

    Article  PubMed  CAS  Google Scholar 

  • Shirakura M, Murakami K, Ichimura T, Suzuki R, Shimoji T, Fukuda K et al (2007) E6AP ubiquitin ligase mediates ubiquitylation and degradation of hepatitis C virus core protein. J Virol 81:1174–1185

    Article  PubMed  CAS  Google Scholar 

  • Suzuki R, Sakamoto S, Tsutsumi T, Rikimaru A, Tanaka K, Shimoike T et al (2005) Molecular determinants for subcellular localization of hepatitis C virus core protein. J Virol 79:1271–1281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046

    Article  PubMed  CAS  Google Scholar 

  • Taguwa S, Kambara H, Fujita N, Noda T, Yoshimori T, Koike K, Moriishi K, Matsuura Y (2011) Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C virus. J Virol 85:13185–13194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka N, Moriya K, Kiyosawa K, Koike K, Gonzalez FJ, Aoyama T (2008) PPARalpha activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice. J Clin Invest 118:683–694

    PubMed  PubMed Central  Google Scholar 

  • Tardif KD, Mori K, Siddiqui A (2002) Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway. J Virol 76:7453–7459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Theiss AL, Idell RD, Srinivasan S, Klapproth JM, Jones DP, Merlin D et al (2007) Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB J 21:197–206

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi T, Suzuki T, Shimoike T, Suzuki R, Moriya K, Shintani Y et al (2002a) Interaction of hepatitis C virus core protein with retinoid X receptor alpha modulates its transcriptional activity. Hepatology 35:937–946

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi T, Suzuki T, Moriya K, Yotsuyanagi H, Shintani Y, Fujie H et al (2002b) Intrahepatic cytokine expression and AP-1 activation in mice transgenic for hepatitis C virus core protein. Virology 304:415–424

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi T, Suzuki T, Moriya K, Shintani Y, Fujie H, Miyoshi H et al (2003) Hepatitis C virus core protein activates ERK and p38 MAPK in cooperation with ethanol in transgenic mice. Hepatology 38:820–828

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi T, Matsuda M, Aizaki H, Moriya K, Miyoshi H, Fujie H, Shintani Y, Yotsuyanagi H, Miyamura T, Suzuki T, Koike K (2009) Proteomics analysis of mitochondrial proteins reveals overexpression of a mitochondrial protein chaperone, prohibitin, in cells expressing hepatitis C virus core protein. Hepatology 50:378–386

    Article  PubMed  CAS  Google Scholar 

  • Wakita T, Taya C, Katsume A et al (1998) Efficient conditional transgene expression in hepatitis C virus cDNA transgenic mice mediated by the Cre/loxP system. J Biol Chem 273:9001–9006

    Article  PubMed  CAS  Google Scholar 

  • Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, Murthy K, Habermann A, Kräusslich HG, Mizokami M, Bartenschlager R, Liang TJ (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yen HH, Shih KL, Lin TT, Su WW, Soon MS, Liu CS (2012) Decreased mitochondrial deoxyribonucleic acid and increased oxidative damage in chronic hepatitis C. World J Gastroenterol 18:5084–5089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yotsuyanagi H, Shintani Y, Moriya K, Fujie H, Tsutsumi T, Kato T et al (2000) Virological analysis of non-B, non-C hepatocellular carcinoma in Japan: frequent involvement of hepatitis B virus. J Infect Dis 181:1920–1928

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Koike .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koike, K., Tsutsumi, T. (2021). The Oncogenic Role of Hepatitis C Virus. In: Wu, TC., Chang, MH., Jeang, KT. (eds) Viruses and Human Cancer. Recent Results in Cancer Research, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-030-57362-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57362-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57361-4

  • Online ISBN: 978-3-030-57362-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics