Skip to main content

Interaction, Cooperation and Entrainment in Music: Experience and Perspectives

  • Chapter
  • First Online:
Space-Time Geometries for Motion and Perception in the Brain and the Arts

Part of the book series: Lecture Notes in Morphogenesis ((LECTMORPH))

Abstract

Complex multi-agent behavioral coordination requires the capability of reading and sending subtle sensorimotor messages while performing a joint action towards a shared goal. While progress has been made in the field of social neuroscience, the neurobehavioral mechanisms underlying this kind of interaction, still represent the ‘dark matter’ of cognitive neuroscience. Here we present a series of investigations using ensemble musicians as a test-bed to explore whether motion kinematics and advanced time-series analysis could be used to extract these dynamics. The data we report suggests that the pattern of sensorimotor communication flow between musicians and conductors modulate joint action outcome. Furthermore, we also demonstrate that music ensemble communication is conveyed by movements of different body parts, each one of them containing complementary information needed for coordination. This research line has thus the potential to unravel the multi-scale and multi-channel nature of human sensorimotor communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109–1116.

    Article  Google Scholar 

  • Avenanti, A., Bolognini, N., Maravita, A., & Aglioti, S. M. (2007). Somatic and motor components of action simulation. Current Biology: CB, 17(24), 2129–2135.

    Article  Google Scholar 

  • Babiloni, C., Buffo, P., Vecchio, F., Marzano, N., Del Percio, C., Spada, D., et al. (2012). Brains “in concert”: Frontal oscillatory alpha rhythms and empathy in professional musicians. NeuroImage, 60(1), 105–116.

    Article  Google Scholar 

  • Badino, L., D’Ausilio, A., Glowinski, D., Camurri, A., & Fadiga, L. (2014). Sensorimotor communication in professional quartets. Neuropsychologia, 55, 98–104.

    Article  Google Scholar 

  • Bangert, M., & Altenmüller, E. O. (2003). Mapping perception to action in piano practice: A longitudinal DC-EEG study. BMC Neuroscience, 4, 26.

    Article  Google Scholar 

  • Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., et al. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30(3), 917–926.

    Article  Google Scholar 

  • Borra, E., Belmalih, A., Calzavara, R., Gerbella, M., Murata, A., Rozzi, S., & Luppino, G. (2008). Cortical connections of the macaque anterior intraparietal (AIP) area. Cerebral Cortex, 18(5):1094–1111. (New York, NY: 1991).

    Google Scholar 

  • Borroni, P., Montagna, M., Cerri, G., & Baldissera, F. (2005). Cyclic time course of motor excitability modulation during the observation of a cyclic hand movement. Brain Research, 1065(1–2), 115–124. https://doi.org/10.1016/j.brainres.2005.10.034.

    Article  Google Scholar 

  • Boulez, P. (1987). Penser la musique aujourd’hui. Paris: Gallimard.

    Google Scholar 

  • Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. The European Journal of Neuroscience, 13(2), 400–404.

    Google Scholar 

  • Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex, 15(8), 1243–1249. (New York, NY: 1991).

    Article  Google Scholar 

  • Candidi, M., Sacheli, L. M., Mega, I., & Aglioti, S. M. (2014). Somatotopic mapping of piano fingering errors in sensorimotor experts: TMS studies in pianists and visually trained musically naives. Cerebral Cortex, 24(2), 435–443. (New York, NY: 1991).

    Article  Google Scholar 

  • Cicchini, G. M., Arrighi, R., Cecchetti, L., Giusti, M., & Burr, D. C. (2012). Optimal encoding of interval timing in expert percussionists. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(3), 1056–1060.

    Article  Google Scholar 

  • Clark, A., & Grush, R. (1999). Towards a cognitive robotics. Adaptive Behavior, 7, 5–16.

    Article  Google Scholar 

  • Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433(7025), 513–516.

    Article  Google Scholar 

  • D’Ausilio, A., Bartoli, E., & Maffongelli, L. (2015a). Grasping synergies: A motor-control approach to the mirror neuron mechanism. Physics of life Reviews, 12, 91–103.

    Article  Google Scholar 

  • D’Ausilio, A., Brunetti, R., Delogu, F., Santonico, C., & Belardinelli, M. O. (2010). How and when auditory action effects impair motor performance. Experimental Brain Research, 201(2), 323–330.

    Article  Google Scholar 

  • D’Ausilio, A., Novembre, G., Fadiga, L., & Keller, P. E. (2015b). What can music tell us about social interaction? Trends in Cognitive Sciences, 19(3), 111–114.

    Article  Google Scholar 

  • D’Ausilio, A., Altenmuller, E., Olivetti Belardinelli, M., & Lotze, M. (2006). Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. The European Journal of Neuroscience, 24(3), 955–958.

    Article  Google Scholar 

  • D’Ausilio, A., Badino, L., Li, Y., Tokay, S., Craighero, L., Canto, R., et al. (2012). Leadership in orchestra emerges from the causal relationships of movement kinematics. PLoS ONE, 7(5), e35757.

    Article  Google Scholar 

  • Decety, J., Grezes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., et al. (1997). Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain: A Journal of Neurology, 120(Pt 10), 1763–1777.

    Google Scholar 

  • Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science (New York, NY), 270(5234), 305–307.

    Article  Google Scholar 

  • Engel, A., Bangert, M., Horbank, D., Hijmans, B. S., Wilkens, K., Keller, P. E., et al. (2012). Learning piano melodies in visuo-motor or audio-motor training conditions and the neural correlates of their cross-modal transfer. NeuroImage, 63(2), 966–978.

    Article  Google Scholar 

  • Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73(6), 2608–2611.

    Article  Google Scholar 

  • Fairhurst, M. T., Janata, P., & Keller, P. E. (2013). Being and feeling in sync with an adaptive virtual partner: Brain mechanisms underlying dynamic cooperativity. Cerebral Cortex, 23(11), 2592–2600. (New York, NY: 1991).

    Google Scholar 

  • Fairhurst, M. T., Janata, P., & Keller, P. E. (2014). Leading the follower: An fMRI investigation of dynamic cooperativity and leader-follower strategies in synchronization with an adaptive virtual partner. NeuroImage, 84, 688–697.

    Article  Google Scholar 

  • Fazio, P., Cantagallo, A., Craighero, L., D’Ausilio, A., Roy, A. C., Pozzo, T., et al. (2009). Encoding of human action in Broca’s area. Brain: A Journal of Neurology, 132(Pt 7), 1980–1988. https://doi.org/10.1093/brain/awp118.

    Article  Google Scholar 

  • Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science (New York, NY), 308(5722), 662–667.

    Article  Google Scholar 

  • Friston, K., Mattout, J., & Kilner, J. (2011). Action understanding and active inference. Biological cybernetics, 104, 137–160. https://doi.org/10.1007/s00422-011-0424-z.

  • Frith, C. D. (2008). Social cognition. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 363(1499), 2033–2039.

    Article  Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain: A Journal of Neurology, 119(Pt 2), 593–609.

    Google Scholar 

  • Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: Single-subject analyses of unsmoothed fMRI data. Cerebral Cortex, 19(6), 1239–1255. (New York, NY: 1991).

    Google Scholar 

  • Glowinski, D., Mancini, M., Cowie, R., Camurri, A., Chiorri, C., & Doherty, C. (2013). The movements made by performers in a skilled quartet: A distinctive pattern, and the function that it serves. Frontiers in Psychology, 4, 841.

    Article  Google Scholar 

  • Grafton, S. T., & Hamilton, A. F. (2007). Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science, 26(4), 590–616.

    Article  Google Scholar 

  • Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica., 37, 424–438.

    Article  MATH  Google Scholar 

  • Grezes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 1–19.

    Article  Google Scholar 

  • Hari, R., Forss, N., Avikainen, S., Kirveskari, E., Salenius, S., & Rizzolatti, G. (1998). Activation of human primary motor cortex during action observation: A neuromagnetic study. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 15061–15065.

    Article  Google Scholar 

  • Hari, R., Henriksson, L., Malinen, S., & Parkkonen, L. (2015). Centrality of social interaction in human brain function. Neuron, 88(1), 181–193.

    Article  Google Scholar 

  • Haslinger, B., Erhard, P., Altenmuller, E., Schroeder, U., Boecker, H., & Ceballos-Baumann, A. O. (2005). Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience, 17(2), 282–293.

    Article  Google Scholar 

  • Haueisen, J., & Knösche, T. R. (2001). Involuntary motor activity in pianists evoked by music perception. Journal of Cognitive Neuroscience, 13(6), 786–792.

    Article  Google Scholar 

  • Hilt, P. M., Badino, L., D’Ausilio, A., Volpe, G., Fadiga, L., & Camurri, A. (2019). Multi-layer adaptation of group coordination in musical ensembles. Scientific Reports, 9, 5854.

    Article  Google Scholar 

  • Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. The Behavioral and Brain Sciences, 31(1), 1–22.

    Article  Google Scholar 

  • Husserl, E. (1966). Zur Phänomenologie des Inneren Zeitbewusstseins (1893–1917). In V. R. Boehm (Ed.), Husserliana X. La Haye: Martinus Nijhoff.

    Google Scholar 

  • Husserl, E. (1982). Idées directrices pour une phénoménologie et une philosophie phénoménologique pures, vol. II, Recherches phénoménologiques pour la constitution, trad. E. Escoubas. Paris: PUF.

    Google Scholar 

  • Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3(3), e79.

    Article  Google Scholar 

  • Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science (New York, NY), 286(5449), 2526–2528.

    Article  Google Scholar 

  • Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(32), 10153–10159.

    Article  Google Scholar 

  • Kirschner, S., & Tomasello, M. (2010). Joint music making promotes prosocial behavior in 4-year-old children. Evolution and Human Behavior, 31(5), 354–364.

    Article  Google Scholar 

  • Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: Interactions of perception and action. Psychological Science, 12(6), 467–472.

    Article  Google Scholar 

  • Knoblich, G., & Jordan, J. S. (2003). Action coordination in groups and individuals: Learning anticipatory control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(5), 1006–1016.

    Google Scholar 

  • Kokal, I., Engel, A., Kirschner, S., & Keysers, C. (2011). Synchronized drumming enhances activity in the caudate and facilitates prosocial commitment—If the rhythm comes easily. PLoS ONE, 6(11), e27272.

    Article  Google Scholar 

  • Kokal, I., & Keysers, C. (2010). Granger causality mapping during joint actions reveals evidence for forward models that could overcome sensory-motor delays. PLoS ONE, 5(10), e13507.

    Article  Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. New York, NY, USA: Springer.

    Book  MATH  Google Scholar 

  • Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(2), 308–314.

    Article  Google Scholar 

  • Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An FMRI study of jazz improvisation. PLoS ONE, 3(2), e1679.

    Article  Google Scholar 

  • Lipps, T. (1903). Einfühlung, innere Nachahmung, und Organempfindung. Archiv für die Gesamte Psychologie, 1(2), 185–204.

    MathSciNet  Google Scholar 

  • Loehr, J. D., Kourtis, D., Vesper, C., Sebanz, N., & Knoblich, G. (2013). Monitoring individual and joint action outcomes in duet music performance. Journal of Cognitive Neuroscience, 25(7), 1049–1061.

    Article  Google Scholar 

  • Lotze, M., Scheler, G., Tan, H. R., Braun, C., & Birbaumer, N. (2003). The musician’s brain: Functional imaging of amateurs and professionals during performance and imagery. NeuroImage, 20(3), 1817–1829.

    Article  Google Scholar 

  • Luppino, G., Murata, A., Govoni, P., & Matelli, M. (1999). Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Experimental Brain Research, 128(1–2), 181–187.

    Article  Google Scholar 

  • Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., & Rizzolatti, G. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey. Journal of Neurophysiology, 78(4), 2226–2230.

    Article  Google Scholar 

  • Nagy, M., Akos, Z., Biro, D., & Vicsek, T. (2010). Hierarchical group dynamics in pigeon flocks. Nature, 464(7290), 890–893.

    Article  Google Scholar 

  • Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A. M., & Bekkering, H. (2007). The mirror neuron system is more active during complementary compared with imitative action. Nature Neuroscience, 10(7), 817–818.

    Article  Google Scholar 

  • Novembre, G., Ticini, L. F., Schutz-Bosbach, S., & Keller, P. E. (2012). Distinguishing self and other in joint action. Evidence from a musical paradigm. Cerebral Cortex, 22(12), 2894–2903. (New York, NY: 1991).

    Google Scholar 

  • Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392(6678), 811–814.

    Article  Google Scholar 

  • Pecenka, N., & Keller, P. E. (2011). The role of temporal prediction abilities in interpersonal sensorimotor synchronization. Experimental Brain Research, 211(3–4), 505–515.

    Article  Google Scholar 

  • Petrides, M., & Pandya, D. N. (2009). Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biology, 7(8), e1000170.

    Article  Google Scholar 

  • Ragert, M., Schroeder, T., & Keller, P. E. (2013). Knowing too little or too much: The effects of familiarity with a co-performer’s part on interpersonal coordination in musical ensembles. Frontiers in Psychology, 4, 368.

    Article  Google Scholar 

  • Rands, S. A., Cowlishaw, G., Pettifor, R. A., Rowcliffe, J. M., & Johnstone, R. A. (2003). Spontaneous emergence of leaders and followers in foraging pairs. Nature, 423(6938), 432–434.

    Article  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.

    Article  Google Scholar 

  • Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., et al. (1996). Localization of grasp representations in humans by PET: 1. Observation versus execution. Experimental Brain Research, 111(2), 246–252.

    Article  Google Scholar 

  • Rizzolatti, G., & Luppino, G. (2001). The cortical motor system. Neuron, 31(6), 889–901.

    Article  Google Scholar 

  • Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11(4), 264–274.

    Article  Google Scholar 

  • Rozzi, S., Calzavara, R., Belmalih, A., Borra, E., Gregoriou, G. G., Matelli, M., & Luppino, G. (2006). Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cerebral Cortex, 16(10), 1389–1417. (New York, NY: 1991).

    Google Scholar 

  • Sänger, J., Muller, V., & Lindenberger, U. (2012). Intra- and interbrain synchronization and network properties when playing guitar in duets. Frontiers in Human Neuroscience, 6, 312.

    Article  Google Scholar 

  • Sänger, J., Muller, V., & Lindenberger, U. (2013). Directionality in hyperbrain networks discriminates between leaders and followers in guitar duets. Frontiers in Human Neuroscience, 7, 234.

    Article  Google Scholar 

  • Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., Schlicht, T., et al. (2013). Toward a second-person neuroscience. The Behavioral and Brain Sciences, 36(4), 393–414.

    Article  Google Scholar 

  • Schlaug, G., Jancke, L., Huang, Y., & Steinmetz, H. (1995). In vivo evidence of structural brain asymmetry in musicians. Science (New York, NY), 267(5198), 699–701.

    Article  Google Scholar 

  • Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in cognitive sciences, 10(2), 70–76.

    Article  Google Scholar 

  • Sommerville, J. A., & Decety, J. (2006). Weaving the fabric of social interaction: Articulating developmental psychology and cognitive neuroscience in the domain of motor cognition. Psychonomic Bulletin & Review, 13(2), 179–200.

    Article  Google Scholar 

  • Tokay, S. (2016). Le corps musicien. Montréal: Editions Liber.

    Google Scholar 

  • Vernon, D., Von Hofsten, C., & Fadiga, L. (2011). A roadmap for cognitive development in humanoid robots. Berlin: Springer.

    Book  Google Scholar 

  • von Helmholtz, H. (1990). Théorie physiologique de la musique. Paris: Jacques Gabay.

    Google Scholar 

  • Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131(3), 460–473.

    Article  Google Scholar 

  • Wing, A. M., Endo, S., Bradbury, A., & Vorberg, D. (2014). Optimal feedback correction in string quartet synchronization. Journal of the Royal Society, Interface, 11(93), 20131125.

    Article  Google Scholar 

  • Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 358(1431), 593–602.

    Article  Google Scholar 

  • Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science (New York, NY), 269(5232), 1880–1882.

    Article  Google Scholar 

  • Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks: The Official Journal of the International Neural Network Society, 11(7–8), 1317–1329.

    Article  Google Scholar 

  • Xenakis, I. (1971). Musique architecture. Paris: Casterman.

    Google Scholar 

  • Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Fadiga .

Editor information

Editors and Affiliations

Appendices

Addendum

The Phenomenology of Musical Motricity: Perspectives from an Orchestra Conductor ( by Serâ Tokay )

Own-Body, Kinesthesia and Music

I have always considered particularly useful the phenomenological approach to examine the experience of the musician interpreting the works of the classical repertoire (Tokay, 2016). The instrumentalist’s sensorimotor experience is the “place” where it is possible to bring together the muscular kinaesthesia of the instrumental gesture, the reactivation of the creative intuition of the composer and the empathic resonance resulting from what other musicians and the music-lovers hear. As musician and philosopher, my approach makes use of a theory of the constitutive function of the kinaesthetic system derived from the work of Husserl (1966, 1982), re-oriented, in the direction of a theory of the constitution of the musical sound, insofar as the latter emanates from the sensorimotor activity of the musician. In the following sections, inspired by Husserl’s perspective, I will start discussing the empathic process linking conductor, musicians and audience, I will then continue along the theory of an active production, controlled by the technical savoir-faire of the musicians and by the psychophysical bidirectional link established by the conductor with them. Finally, I will examine the experimental results presented in this chapter from a perspective centered on a theory of the aesthetic object (the musical object insofar as it responds to the artistic norms of harmony). My approach has been developed in opposition to the physicalist reduction of the aesthetic dimension of the musical sound through its analysis in terms of physical properties of acoustic oscillations (von Helmholtz 1990; Xenakis 1971; Boulez 1987).

Empathy and Motor Entrainment

As ‘Einfühlung’ Lipps (1903) defined the lively feeling of being-self which an observer is able to derive from the aesthetic contemplation of another being in movement. He emphasized the direct way in which, without any intermediary judgment, a human being can get immersed in another interior life via observation of the facial and corporeal expressions of the other. Husserl noted that the perceptual recognition of the other requires an appreciation of his body as own body, and he amplified Einfühlung into a dynamic process of co-constitution, the constitution of a common world across the intentions and actions of the self and of others. In the same perspective as the co-constitution of a life-world, but by withdrawing from any transcendental abstraction into a more concrete and bodily field, I take account of those participating in a concert. The movements of the instrumentalists, all of whom are oriented towards the same musical “ideas”, frame the horizon within which the sounds produced take on the value of musical sounds for those in the audience.

Conducting an Orchestra: Coordination or Anticipation?

Here I would like to stress that the integration of the actions of the instrumentalists engaged in playing a musical work depends upon the conductor’s power of anticipation. This anticipation depends upon a motor apprehension of musical time. The result of a quite special technical mastery of the movement of the hands and arms. The speed with which neuromuscular innervation is produced enables the conductor to elicit a haptic analogue of the motor intentions of the instrumentalist. As for the musicians, this anticipation of the kinaesthetic temporality of their own movements by those of the conductor is necessary if one is to grasp the expressive intentions guiding the hands, the gaze, the breath and the bodily posture of the conductor. Without all this it is impossible to understand the affective character of the work, its temporality and its rhythm. According to this view, conducting does not mean to create a hierarchical subordination between the micro-intentions of the instrumentalists and the directional intentions of the conductor. Conversely, there is a continuous alternation between the common goal (harmony) and the singular goals of individual musicians, regulated by a collective desire to play the work as well as possible.

As an example I would like to remember the very start of the 4th Symphony of Schumann, which begins with an A without rhythm in tutti, where a rhythm in ¾ has to be conducted in 6 times interspersed with silences, and in an atmosphere agitated by a continual alternation between forte-piano and crescendo-diminuendo, against a background of rubato. In this context the entire orchestra shares a single telos to intuit a tempo. In such a tempestuous climate each musician has to count his quavers individually, even while sharing the same sense of time, whose unity is established by an empathic relation with the movements of the conductor.

Discussion of Some Experimental Results

  1. 1.

    The Driving Force of the Conductor

In this work we have analyzed the kinematic recordings of violin players belonging to a chamber orchestra while playing pieces of Mozart under the direction of two different conductors. As Driving Force, we considered the amount of causality between conductor’s hand and baton velocities and violinists’ bows determined according to Granger’s method. This concept of causality depends on the idea that when one has two variables which are relatively independent (like the respective trajectories of the hands of the musicians and of the conductor), but which depend upon each other in such a way that knowledge of the past values of one trajectory make it possible to predict the value of the other (the conductor getting ahead of the musicians), the first ‘causes’ the second (in Granger’s sense of that word). The comparison of the curves described by a recording of the conductors’ batons and the bows of the violinists show that the invited conductor (who directs in advance) exerts a driving force over the musicians that is both more frequent and stronger than that of the principal conductor. A comparison of the curves recording the bows of the violinists when they play under the direction of the 2 conductors shows that the driving force exerted by the musicians on each other is that much weaker when the driving force of the conductor is stronger and when he figures as the source of the unity of the ensemble. It is plausible that the measure of the conductor’s driving force represent an acceptable quantification of the intersubjective experience that we describe from a phenomenological point of view with the concept of motor empathy acting between the conductor and the musicians.

  1. 2.

    The leadership of the conductor as soft entrainment

In an orchestra, the leadership exerted by the conductor consists in getting his musicians to play together. So it should be possible to measure the efficiency of the conductor by the degree of entrainment he instils in the orchestra. But unlike the metronome, which achieves a perfect synchronization without any musical value, the entrainment of the orchestra owes its aesthetic character to a subtle modulation of the dynamics of the entrainment (soft entrainment). The emergence of a collective rhythm on the basis of the individual rhythms of the musicians considered as coupled oscillators is made possible by a phase synchronization in the oscillations, which is mathematically described by the Kuramoto model (Kuramoto 1984). An index of synchronization measuring the soft entrainment of the orchestra is calculated for each measure, and for each conductor. This index, coupled with an evaluation of the artistic quality of the execution, offers a criterion for the efficiency of the leadership of the conductor, one that confirms the score already obtained. The most efficient conductor is the one who exerts the most considerable influence on the musicians. The convergence of the results obtained with the same participants in applying two different mathematical models to the data recorded, the one issuing from econometrics (Granger causality), the other from the analytic mechanics of coupled oscillators (Kuramoto model) proves that anticipation is essential to the direction of an orchestra, whatever the theoretical model employed.

  1. 3.

    Extended empathy through ancillary movements

This experiment has looked at significant differences between the ancillary movements of the head of the musicians when the musicians benefit from a normal vision of the movements of the conductor, and when part of them (the first row) are turned by 180°, and can only obtain indirect information on tempo, upbeat, bow movements, nuances, beats, fermata, etc. through the visual observation of the gestures of musicians of the second row that does enjoy a direct vision of the conductor. The recordings in question have been made with the overture to Rossini’s Opera: Il Signor Bruschino. Results were clear: the musicians who are unable to see the conductor make more ancillary movements of the head than when they are able to see her/him. This difference is a measurable characteristic of the movement, a geometrical precursor of the intentional orientation of this movement, indicative of the effort the musicians are obliged to make to mitigate with ancillary movements their less than optimal condition. They are able to compensate for the lack of vision of the conductor with glances at the instrumental movements of their colleagues in the other group facing them. If they nevertheless still remain ensemble, it is only because all the musical information provided by their conductor has been relayed to them by the instrumental movements of this other group of musicians. And so it is that a common behavioural pattern emerges, one that constitutes an inter-subjective field of intentions expressed through gestures encompassing the musicians of both groups. Here, the experimental manipulation achieves an exceptional extension of the inter-subjective space of communication, putting to the test the conductor’s ability to convey his artistic intentions no matter how great the distance to be crossed.

What Can We Learn from These Investigations?

In summary, and from my perspective, these are the main outcome of this investigation:

  1. (1)

    In the body of the musician, from which every affectively qualified action proceeds, converge both the experiences of the interpreter and of the auditor.

  2. (2)

    Only a conductor capable of an auto-affective anticipation finds herself in a position to promote the emotive and motivating principle necessary for the musician to play well.

  3. (3)

    An orchestra confronting its conductor awaits from her a non-verbal motor communication, which in turn depends upon her capacity to surpass the initially inevitable affective confrontation with the orchestra by being ahead of herself through a perfectly mastered gestural strategy.

  4. (4)

    As a function of its bodily mastery, our understanding of musical experience requires both a subjective reflexivity of a phenomenological order and an objectivity derived from a neuroscientific approach.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fadiga, L., Tokay, S., D’Ausilio, A. (2021). Interaction, Cooperation and Entrainment in Music: Experience and Perspectives. In: Flash, T., Berthoz, A. (eds) Space-Time Geometries for Motion and Perception in the Brain and the Arts. Lecture Notes in Morphogenesis. Springer, Cham. https://doi.org/10.1007/978-3-030-57227-3_11

Download citation

Publish with us

Policies and ethics