Skip to main content

Complications in Pediatric Urology Minimally Invasive Surgery

  • Chapter
  • First Online:
Minimally Invasive and Robotic-Assisted Surgery in Pediatric Urology
  • 417 Accesses

Abstract

Over the past 25 years, pediatric minimally invasive surgery (MIS) has grown in volume and complexity. Initially, MIS consisted of purely laparoscopic cases. Multiple series have demonstrated low complication rates with pediatric laparoscopy. In the twenty-first century, robotically-assisted laparoscopy grew in popularity and expanded the breadth of MIS cases performed in both adults and in children.

This chapter reviews the outcomes of various pediatric MIS cases. Pyeloplasty continues to be the most commonly performed pediatric MIS procedure. Wheh compared to open surgery, laparoscopic and robotic pyeloplasty have favorable outcomes and low complication rates. These results encompass older pediatric patients and infants. National trends show the total volume of pyeloplasties has remained stable, but the proportion of MIS pyeloplasties has increased over time.

The role of MIS for other pediatric urologic cases is not as strongly defined. This includes ureteral reimplantation, nephrectomy, and bladder reconstructive cases. Although there are multiple series with encouraging results, the volume of cases is still modest in size. We should continue to evaluate results with a discerning eye.

Some providers are skeptical of MIS in children due to concerns of smaller working space, larger port sizes, and potentially increased exposure to anesthesia. However, this chapter summarizes many favorable results of laparoscopic and robotic cases in children. Therefore, MIS continues to be a viable and appealing option for multiple urologic surgeries in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CHD:

Congenital Heart Disease

LESS:

Laparoendoscopic Single Site Surgery

LP:

Laparoscopic Pyeloplasty

MIS:

Minimally invasive surgery

NSQIP:

National Surgical Quality Improvement Program

OPN:

Open Pyeloplasty

RALMA:

Robotic Assisted Laparoscopic Mitrofanoff Appendicovesicostomy

RALP:

Robotic Assisted Laparoscopic Pyeloplasty

UPJO:

Ureteropelvic Junction Obstruction

UTI:

Urinary Tract Infection

References

  1. Reddy MN, Nerli RB. The laparoscopic pyeloplasty: is there a role in the age of robotics? Urol Clin North Am. 2015;42(1):43–52.

    PubMed  Google Scholar 

  2. Tasian GE, Wiebe DJ, Casale P. Learning curve of robotic assisted pyeloplasty for pediatric urology fellows. J Urol. 2013;190(4 Suppl):1622–6.

    PubMed  PubMed Central  Google Scholar 

  3. Bolliger M, Kroehnert JA, Molineus F, Kandioler D, Schindl M, Riss P. Experiences with the standardized classification of surgical complications (Clavien-Dindo) in general surgery patients. Eur Surg. 2018;50(6):256–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Avery DI, Herbst KW, Lendvay TS, Noh PH, Dangle P, Gundeti MS, et al. Robot-assisted laparoscopic pyeloplasty: multi-institutional experience in infants. J Pediatr Urol. 2015;11(3):139.e1–5.

    Google Scholar 

  5. Bansal D, Defoor WR Jr, Reddy PP, Minevich EA, Noh PH. Complications of robotic surgery in pediatric urology: a single institution experience. Urology. 2013;82(4):917–20.

    PubMed  Google Scholar 

  6. Dangle PP, Kearns J, Anderson B, Gundeti MS. Outcomes of infants undergoing robot-assisted laparoscopic pyeloplasty compared to open repair. J Urol. 2013;190(6):2221–6.

    PubMed  Google Scholar 

  7. Spinoit AF, Nguyen H, Subramaniam R. Role of robotics in children: a brave new world! Eur Urol Focus. 2017;3(2–3):172–80.

    PubMed  Google Scholar 

  8. Riedmiller H, et al. EAU guidelines on paediatric urology. Eur Urol. 2001;40(5):589.

    Google Scholar 

  9. Herz D, Fuchs M, Todd A, McLeod D, Smith J. Robot-assisted laparoscopic extravesical ureteral reimplant: a critical look at surgical outcomes. J Pediatr Urol. 2016;12(6):402.e1–9.

    Google Scholar 

  10. Schomburg JL, Haberman K, Willihnganz-Lawson KH, Shukla AR. Robot-assisted laparoscopic ureteral reimplantation: a single surgeon comparison to open surgery. J Pediatr Urol. 2014;10(5):875–9.

    PubMed  Google Scholar 

  11. Timberlake MD, Peters CA. Current status of robotic-assisted surgery for the treatment of vesicoureteral reflux in children. Curr Opin Urol. 2017;27(1):20–6.

    PubMed  Google Scholar 

  12. Jordan GH, Winslow BH. Laparoscopically assisted continent catheterizable cutaneous appendicovesicostomy. J Endourol. 1993;7(6):517–20.

    CAS  PubMed  Google Scholar 

  13. Grimsby GM, Jacobs MA, Gargollo PC. Comparison of complications of robot-assisted laparoscopic and open appendicovesicostomy in children. J Urol. 2015;194(3):772–6.

    PubMed  Google Scholar 

  14. Snodgrass W. Re: long-term outcomes of bladder neck reconstruction without augmentation cystoplasty in children: G. M. Grimsby, V. Menon, B. J. Schlomer, L. A. Baker, R. Adams, P. C. Gargollo and M. A. Jacobs J Urol. 2016;195:155–161. J Urol. 2016;196(1):286–8.

    PubMed  Google Scholar 

  15. Bagrodia A, Gargollo P. Robot-assisted bladder neck reconstruction, bladder neck sling, and appendicovesicostomy in children: description of technique and initial results. J Endourol. 2011;25(8):1299–305.

    PubMed  Google Scholar 

  16. Murthy P, Cohn JA, Selig RB, Gundeti MS. Robot-assisted laparoscopic augmentation ileocystoplasty and Mitrofanoff appendicovesicostomy in children: updated interim results. Eur Urol. 2015;68(6):1069–75.

    PubMed  Google Scholar 

  17. Thakre AA, Yeung CK, Peters C. Robot-assisted Mitrofanoff and Malone antegrade continence enema reconstruction using divided appendix. J Endourol. 2008;22(10):2393–6; discussion 6.

    PubMed  Google Scholar 

  18. Kavoussi LR, Peters CA. Laparoscopic pyeloplasty. J Urol. 1993;150(6):1891–4.

    CAS  PubMed  Google Scholar 

  19. Moore RG, Averch TD, Schulam PG, Adams JB 2nd, Chen RN, Kavoussi LR. Laparoscopic pyeloplasty: experience with the initial 30 cases. J Urol. 1997;157(2):459–62.

    CAS  PubMed  Google Scholar 

  20. Jarrett TW, Chan DY, Charambura TC, Fugita O, Kavoussi LR. Laparoscopic pyeloplasty: the first 100 cases. J Urol. 2002;167(3):1253–6.

    PubMed  Google Scholar 

  21. Soulie M, Salomon L, Patard JJ, Mouly P, Manunta A, Antiphon P, et al. Extraperitoneal laparoscopic pyeloplasty: a multicenter study of 55 procedures. J Urol. 2001;166(1):48–50.

    CAS  PubMed  Google Scholar 

  22. Soulie M, Thoulouzan M, Seguin P, Mouly P, Vazzoler N, Pontonnier F, et al. Retroperitoneal laparoscopic versus open pyeloplasty with a minimal incision: comparison of two surgical approaches. Urology. 2001;57(3):443–7.

    CAS  PubMed  Google Scholar 

  23. Ben Slama MR, Salomon L, Hoznek A, Cicco A, Saint F, Alame W, et al. Extraperitoneal laparoscopic repair of ureteropelvic junction obstruction: initial experience in 15 cases. Urology. 2000;56(1):45–8.

    CAS  PubMed  Google Scholar 

  24. Peters CA. Complications in pediatric urological laparoscopy: results of a survey. J Urol. 1996;155(3):1070–3.

    CAS  PubMed  Google Scholar 

  25. Esposito C, Lima M, Mattioli G, Mastroianni L, Centonze A, Monguzzi GL, et al. Complications of pediatric urological laparoscopy: mistakes and risks. J Urol. 2003;169(4):1490–2; discussion 2.

    PubMed  Google Scholar 

  26. Passerotti CC, Nguyen HT, Retik AB, Peters CA. Patterns and predictors of laparoscopic complications in pediatric urology: the role of ongoing surgical volume and access techniques. J Urol. 2008;180(2):681–5.

    PubMed  Google Scholar 

  27. Luque Mialdea R, Martin-Crespo Izquierdo R. Laparoscopy in pediatric urology. Arch Esp Urol. 2002;55(6):737–47.

    PubMed  Google Scholar 

  28. Colaco M, Hester A, Visser W, Rasper A, Terlecki R. Relative to open surgery, minimally-invasive renal and ureteral pediatric surgery offers no improvement in 30-day complications, yet requires longer operative time: data from the National Surgical Quality Improvement Program Pediatrics. Investig Clin Urol. 2018;59(3):200–5.

    PubMed  PubMed Central  Google Scholar 

  29. Chu DI, Tan JM, Mattei P, Simpao AF, Costarino AT, Shukla AR, et al. Outcomes of laparoscopic and open surgery in children with and without congenital heart disease. J Pediatr Surg. 2018;53(10):1980–8.

    PubMed  Google Scholar 

  30. Abdelshehid CS, Eichel L, Lee D, Uribe C, Boker J, Basillote J, et al. Current trends in urologic laparoscopic surgery. J Endourol. 2005;19(1):15–20.

    PubMed  Google Scholar 

  31. Eichel L, Ahlering TE, Clayman RV. Role of robotics in laparoscopic urologic surgery. Urol Clin North Am. 2004;31(4):781–92.

    PubMed  Google Scholar 

  32. Partin AW, Adams JB, Moore RG, Kavoussi LR. Complete robot-assisted laparoscopic urologic surgery: a preliminary report. J Am Coll Surg. 1995;181(6):552–7.

    CAS  PubMed  Google Scholar 

  33. Harel M, Herbst KW, Silvis R, Makari JH, Ferrer FA, Kim C. Objective pain assessment after ureteral reimplantation: comparison of open versus robotic approach. J Pediatr Urol. 2015;11(2):82.e1–8.

    CAS  Google Scholar 

  34. Brooks-Brunn JA. Predictors of postoperative pulmonary complications following abdominal surgery. Chest. 1997;111(3):564–71.

    CAS  PubMed  Google Scholar 

  35. Barashi NS, Andolfi C, Wallace A, Rodriguez MV, Schadler E, Gundeti MS. Lessons learned from a single-surgeon series of paediatric robot-assisted laparoscopic urological procedures: predictors of high-grade postoperative complications. BJU Int. 2019; https://doi.org/10.1111/bju.14757.

  36. Dangle PP, Akhavan A, Odeleye M, Avery D, Lendvay T, Koh CJ, et al. Ninety-day perioperative complications of pediatric robotic urological surgery: a multi-institutional study. J Pediatr Urol. 2016;12(2):102.e1–6.

    CAS  Google Scholar 

  37. Duchene DA, Moinzadeh A, Gill IS, Clayman RV, Winfield HN. Survey of residency training in laparoscopic and robotic surgery. J Urol. 2006;176(5):2158–66; discussion 67.

    PubMed  Google Scholar 

  38. Wang DS, Winfield HN. Survey of urological laparoscopic practice patterns in the Midwest. J Urol. 2004;172(6 Pt 1):2282–6.

    PubMed  Google Scholar 

  39. Tejwani R, Young BJ, Wang HS, Wolf S, Purves JT, Wiener JS, et al. Open versus minimally invasive surgical approaches in pediatric urology: trends in utilization and complications. J Pediatr Urol. 2017;13(3):283.e1–9.

    Google Scholar 

  40. Colodny AH. Laparoscopy in pediatric urology: too much of a good thing? Semin Pediatr Surg. 1996;5(1):23–9.

    CAS  PubMed  Google Scholar 

  41. Kozlov Y, Kovalkov K, Nowogilov V. 3D laparoscopy in neonates and infants. J Laparoendosc Adv Surg Tech A. 2016;26(12):1021–7.

    PubMed  Google Scholar 

  42. Kutikov A, Nguyen M, Guzzo T, Canter D, Casale P. Robot assisted pyeloplasty in the infant-lessons learned. J Urol. 2006;176(5):2237–9; discussion 9–40.

    PubMed  Google Scholar 

  43. Yee DS, Shanberg AM, Duel BP, Rodriguez E, Eichel L, Rajpoot D. Initial comparison of robotic-assisted laparoscopic versus open pyeloplasty in children. Urology. 2006;67(3):599–602.

    PubMed  Google Scholar 

  44. Varda BK, Wang Y, Chung BI, Lee RS, Kurtz MP, Nelson CP, et al. Has the robot caught up? National trends in utilization, perioperative outcomes, and cost for open, laparoscopic, and robotic pediatric pyeloplasty in the United States from 2003 to 2015. J Pediatr Urol. 2018;14(4):336.e1–8.

    Google Scholar 

  45. Bauer JJ, Bishoff JT, Moore RG, Chen RN, Iverson AJ, Kavoussi LR. Laparoscopic versus open pyeloplasty: assessment of objective and subjective outcome. J Urol. 1999;162(3 Pt 1):692–5.

    CAS  PubMed  Google Scholar 

  46. Klingler HC, Remzi M, Janetschek G, Kratzik C, Marberger MJ. Comparison of open versus laparoscopic pyeloplasty techniques in treatment of uretero-pelvic junction obstruction. Eur Urol. 2003;44(3):340–5.

    PubMed  Google Scholar 

  47. Camarillo DB, Krummel TM, Salisbury JK Jr. Robotic technology in surgery: past, present, and future. Am J Surg. 2004;188(4A Suppl):2s–15s.

    PubMed  Google Scholar 

  48. Lee RS, Retik AB, Borer JG, Peters CA. Pediatric robot assisted laparoscopic dismembered pyeloplasty: comparison with a cohort of open surgery. J Urol. 2006;175(2):683–7; discussion 7.

    PubMed  Google Scholar 

  49. Riachy E, Cost NG, Defoor WR, Reddy PP, Minevich EA, Noh PH. Pediatric standard and robot-assisted laparoscopic pyeloplasty: a comparative single institution study. J Urol. 2013;189(1):283–7.

    PubMed  Google Scholar 

  50. Olsen LH, Rawashdeh YF, Jorgensen TM. Pediatric robot assisted retroperitoneoscopic pyeloplasty: a 5-year experience. J Urol. 2007;178(5):2137–41; discussion 41.

    PubMed  Google Scholar 

  51. Kafka IZ, Kocherov S, Jaber J, Chertin B. Pediatric robotic-assisted laparoscopic pyeloplasty (RALP): does weight matter? Pediatr Surg Int. 2019;35(3):391–6.

    PubMed  Google Scholar 

  52. Kawal T, Srinivasan AK, Shrivastava D, Chu DI, Van Batavia J, Weiss D, et al. Pediatric robotic-assisted laparoscopic pyeloplasty: does age matter? J Pediatr Urol. 2018;14:540–e1.

    PubMed  Google Scholar 

  53. Neheman A, Kord E, Zisman A, Darawsha AE, Noh PH. Comparison of robotic pyeloplasty and standard laparoscopic pyeloplasty in infants: a bi-institutional study. J Laparoendosc Adv Surg Tech A. 2018;28(4):467–70.

    PubMed  Google Scholar 

  54. Silay MS, Spinoit AF, Undre S, Fiala V, Tandogdu Z, Garmanova T, et al. Global minimally invasive pyeloplasty study in children: results from the Pediatric Urology Expert Group of the European Association of Urology Young Academic Urologists working party. J Pediatr Urol. 2016;12(4):229.e1–7.

    CAS  Google Scholar 

  55. Andolfi C, Adamic B, Oommen J, Gundeti MS. Robot-assisted laparoscopic pyeloplasty in infants and children: is it superior to conventional laparoscopy? World J Urol. 2020;38(8):1827–33.

    PubMed  Google Scholar 

  56. Jacobson DL, Shannon R, Johnson EK, Gong EM, Liu DB, Flink CC, et al. Robot-assisted laparoscopic reoperative repair for failed pyeloplasty in children: an updated series. J Urol. 2019;201(5):1005–11.

    PubMed  Google Scholar 

  57. Bowen DK, Faasse MA, Liu DB, Gong EM, Lindgren BW, Johnson EK. Use of pediatric open, laparoscopic and robot-assisted laparoscopic ureteral Reimplantation in the United States: 2000 to 2012. J Urol. 2016;196(1):207–12.

    PubMed  Google Scholar 

  58. Wang HH, Tejwani R, Cannon GM Jr, Gargollo PC, Wiener JS, Routh JC. Open versus minimally invasive ureteroneocystostomy: a population-level analysis. J Pediatr Urol. 2016;12(4):232.e1–6.

    Google Scholar 

  59. Chan KW, Lee KH, Tam YH, Sihoe JD. Early experience in robotic-assisted laparoscopic bilateral intravesical ureteral reimplantation for vesicoureteral reflux in children. J Robot Surg. 2012;6(3):259–62.

    PubMed  Google Scholar 

  60. Peters C, Woo R. Intravesical robotically assistend bilateral ureteral reimplantation. J Endourol. 2005;19:618–21.

    PubMed  Google Scholar 

  61. Marchini GS, Hong YK, Minnillo BJ, Diamond DA, Houck CS, Meier PM, et al. Robotic assisted laparoscopic ureteral reimplantation in children: case matched comparative study with open surgical approach. J Urol. 2011;185(5):1870–5.

    PubMed  Google Scholar 

  62. Peters CA. Robotically assisted surgery in pediatric urology. Urol Clin North Am. 2004;31(4):743–52.

    PubMed  Google Scholar 

  63. Smith RP, Oliver JL, Peters CA. Pediatric robotic extravesical ureteral reimplantation: comparison with open surgery. J Urol. 2011;185(5):1876–81.

    PubMed  Google Scholar 

  64. Akhavan A, Avery D, Lendvay TS. Robot-assisted extravesical ureteral reimplantation: outcomes and conclusions from 78 ureters. J Pediatr Urol. 2014;10(5):864–8.

    PubMed  Google Scholar 

  65. Grimsby GM, Dwyer ME, Jacobs MA, Ost MC, Schneck FX, Cannon GM, et al. Multi-institutional review of outcomes of robot-assisted laparoscopic extravesical ureteral reimplantation. J Urol. 2015;193(5 Suppl):1791–5.

    PubMed  Google Scholar 

  66. Chalmers D, Herbst K, Kim C. Robotic-assisted laparoscopic extravesical ureteral reimplantation: an initial experience. J Pediatr Urol. 2012;8(3):268–71.

    PubMed  Google Scholar 

  67. Esposito C, Masieri L, Steyaert H, Escolino M, Cerchione R, La Manna A, et al. Robot-assisted extravesical ureteral reimplantation (revur) for unilateral vesico-ureteral reflux in children: results of a multicentric international survey. World J Urol. 2018;36(3):481–8.

    PubMed  Google Scholar 

  68. Silay MS, Baek M, Koh CJ. Robot-assisted laparoscopic Extravesical ureteral reimplantation in children: top-down suturing technique without stent placement. J Endourol. 2015;29(8):864–6.

    PubMed  Google Scholar 

  69. Boysen WR, Ellison JS, Kim C, Koh CJ, Noh P, Whittam B, et al. Multi-institutional review of outcomes and complications of robot-assisted laparoscopic extravesical ureteral reimplantation for treatment of primary vesicoureteral reflux in children. J Urol. 2017;197(6):1555–61.

    PubMed  Google Scholar 

  70. Deng T, Liu B, Luo L, Duan X, Cai C, Zhao Z, et al. Robot-assisted laparoscopic versus open ureteral reimplantation for pediatric vesicoureteral reflux: a systematic review and meta-analysis. World J Urol. 2018;36(5):819–28.

    PubMed  Google Scholar 

  71. Dangle PP, Shah A, Gundeti MS. Robot-assisted laparoscopic ureteric reimplantation: extravesical technique. BJU Int. 2014;114(4):630–2.

    PubMed  Google Scholar 

  72. Rodriguez MV, Boysen WR, Gundeti MS. Robot-assisted laparoscopic common sheath ureteral reimplantation in duplex ureters: LUAA technique tips for optimal outcomes. J Pediatr Urol. 2018;14(4):353–5.

    PubMed  Google Scholar 

  73. Arlen AM, Broderick KM, Travers C, Smith EA, Elmore JM, Kirsch AJ. Outcomes of complex robot-assisted extravesical ureteral reimplantation in the pediatric population. J Pediatr Urol. 2016;12(3):169.e1–6.

    Google Scholar 

  74. Barrieras D, Lapointe S, Reddy PP, Williot P, McLorie GA, Bagli D, et al. Urinary retention after bilateral extravesical ureteral reimplantation: does dissection distal to the ureteral orifice have a role? J Urol. 1999;162(3 Pt 2):1197–200.

    CAS  PubMed  Google Scholar 

  75. Casale P, Patel RP, Kolon TF. Nerve sparing robotic extravesical ureteral reimplantation. J Urol. 2008;179(5):1987–9; discussion 90.

    PubMed  Google Scholar 

  76. Kasturi S, Sehgal SS, Christman MS, Lambert SM, Casale P. Prospective long-term analysis of nerve-sparing extravesical robotic-assisted laparoscopic ureteral reimplantation. Urology. 2012;79(3):680–3.

    PubMed  Google Scholar 

  77. Neheman A, Kord E, Strine AC, VanderBrink BA, Minevich EA, DeFoor WR, et al. Pediatric partial nephrectomy for upper urinary tract duplication anomalies: a comparison between different surgical approaches and techniques. Urology. 2019;125:196–201.

    PubMed  Google Scholar 

  78. MacDonald C, Small R, Flett M, Cascio S, O’Toole S. Predictors of complications following retroperitoneoscopic total and partial nephrectomy. J Pediatr Surg. 2019;54(2):331–4.

    PubMed  Google Scholar 

  79. Ballouhey Q, Binet A, Clermidi P, Braik K, Villemagne T, Cros J, et al. Partial nephrectomy for small children: robot-assisted versus open surgery. Int J Urol. 2017;24(12):855–60.

    CAS  PubMed  Google Scholar 

  80. Esposito C, Escolino M, Miyano G, Caione P, Chiarenza F, Riccipetitoni G, et al. A comparison between laparoscopic and retroperitoneoscopic approach for partial nephrectomy in children with duplex kidney: a multicentric survey. World J Urol. 2016;34(7):939–48.

    PubMed  Google Scholar 

  81. Bansal D, Cost NG, Bean CM, Vanderbrink BA, Schulte M, Noh PH. Infant robot-assisted laparoscopic upper urinary tract reconstructive surgery. J Pediatr Urol. 2014;10(5):869–74.

    PubMed  Google Scholar 

  82. Pedraza R, Weiser A, Franco I. Laparoscopic appendicovesicostomy (Mitrofanoff procedure) in a child using the da Vinci robotic system. J Urol. 2004;171(4):1652–3.

    PubMed  Google Scholar 

  83. Gundeti MS, Eng MK, Reynolds WS, Zagaja GP. Pediatric robotic-assisted laparoscopic augmentation ileocystoplasty and Mitrofanoff appendicovesicostomy: complete intracorporeal--initial case report. Urology. 2008;72(5):1144–7; discussion 7.

    PubMed  Google Scholar 

  84. Nerli RB, Reddy M, Devraju S, Prabha V, Hiremath MB, Jali S. Laparoscopic mitrofanoff appendicovesicostomy: our experience in children. Indian J Urol. 2012;28(1):28–31.

    PubMed  PubMed Central  Google Scholar 

  85. Famakinwa OJ, Rosen AM, Gundeti MS. Robot-assisted laparoscopic Mitrofanoff appendicovesicostomy technique and outcomes of extravesical and intravesical approaches. Eur Urol. 2013;64(5):831–6.

    PubMed  Google Scholar 

  86. Wille MA, Zagaja GP, Shalhav AL, Gundeti MS. Continence outcomes in patients undergoing robotic assisted laparoscopic mitrofanoff appendicovesicostomy. J Urol. 2011;185(4):1438–43.

    PubMed  Google Scholar 

  87. Nguyen HT, Passerotti CC, Penna FJ, Retik AB, Peters CA. Robotic assisted laparoscopic Mitrofanoff appendicovesicostomy: preliminary experience in a pediatric population. J Urol. 2009;182(4):1528–34.

    PubMed  Google Scholar 

  88. Leslie B, Lorenzo AJ, Moore K, Farhat WA, Bagli DJ, Pippi Salle JL. Long-term followup and time to event outcome analysis of continent catheterizable channels. J Urol. 2011;185(6):2298–302.

    PubMed  Google Scholar 

  89. Thomas JC, Dietrich MS, Trusler L, DeMarco RT, Pope JC, Brock JW 3rd, et al. Continent catheterizable channels and the timing of their complications. J Urol. 2006;176(4 Pt 2):1816–20; discussion 20.

    CAS  PubMed  Google Scholar 

  90. Liard A, Seguier-Lipszyc E, Mathiot A, Mitrofanoff P. The Mitrofanoff procedure: 20 years later. J Urol. 2001;165(6 Pt 2):2394–8.

    CAS  PubMed  Google Scholar 

  91. Schlomer BJ, Copp HL. Cumulative incidence of outcomes and urologic procedures after augmentation cystoplasty. J Pediatr Urol. 2014;10(6):1043–50.

    PubMed  PubMed Central  Google Scholar 

  92. Fan X, Lin T, Xu K, Yin Z, Huang H, Dong W, et al. Laparoendoscopic single-site nephrectomy compared with conventional laparoscopic nephrectomy: a systematic review and meta-analysis of comparative studies. Eur Urol. 2012;62(4):601–12.

    PubMed  Google Scholar 

  93. Park YH, Kang MY, Jeong MS, Choi H, Kim HH. Laparoendoscopic single-site nephrectomy using a homemade single-port device for single-system ectopic ureter in a child: initial case report. J Endourol. 2009;23(5):833–5.

    PubMed  Google Scholar 

  94. Johnson KC, Cha DY, DaJusta DG, Barone JG, Ankem MK. Pediatric single-port-access nephrectomy for a multicystic, dysplastic kidney. J Pediatr Urol. 2009;5(5):402–4.

    PubMed  Google Scholar 

  95. Lee DG, Baek M, Ju SH, Jeong BC, Han DH. Laparoendoscopic single-site nephrectomy for single-system ectopic ureters with dysplastic kidneys in children: early experience. J Laparoendosc Adv Surg Tech A. 2011;21(5):461–5.

    PubMed  Google Scholar 

  96. Naitoh Y, Kawauchi A, Yamada Y, Fujihara A, Hongo F, Kamoi K, et al. Laparoendoscopic single-site versus conventional laparoscopic pyeloplasty: a matched pair analysis. Int J Urol. 2014;21(8):793–6.

    PubMed  Google Scholar 

  97. Bansal D, Cost NG, Bean CM, Noh PH. Pediatric laparo-endoscopic single site partial nephrectomy: feasibility in infants and small children for upper urinary tract duplication anomalies. J Pediatr Urol. 2014;10(5):859–63.

    CAS  PubMed  Google Scholar 

  98. Symeonidis EN, Nasioudis D, Economopoulos KP. Laparoendoscopic single-site surgery (LESS) for major urological procedures in the pediatric population: a systematic review. Int J Surg (London, England). 2016;29:53–61.

    Google Scholar 

  99. Rich BS, Creasy J, Afaneh C, Muensterer OJ. The international experience of single-incision pediatric endosurgery: current state of the art. J Laparoendosc Adv Surg Tech A. 2014;24(1):43–9.

    PubMed  Google Scholar 

  100. Fuchs J, Luithle T, Warmann SW, Haber P, Blumenstock G, Szavay P. Laparoscopic surgery on upper urinary tract in children younger than 1 year: technical aspects and functional outcome. J Urol. 2009;182(4):1561–8.

    CAS  PubMed  Google Scholar 

  101. Srougi V, Yorioka M, Sanchez DC, Onal B, Houck CS, Nguyen HT. The feasibility of robotic urologic surgery in infants and toddlers. J Pediatr Urol. 2013;9(6 Pt B):1198–203.

    PubMed  Google Scholar 

  102. Mariano ER, Furukawa L, Woo RK, Albanese CT, Brock-Utne JG. Anesthetic concerns for robot-assisted laparoscopy in an infant. Anesth Analg. 2004;99(6):1665–7, table of contents.

    PubMed  Google Scholar 

  103. Varda BK, Johnson EK, Clark C, Chung BI, Nelson CP, Chang SL. National trends of perioperative outcomes and costs for open, laparoscopic and robotic pediatric pyeloplasty. J Urol. 2014;191(4):1090–5.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, C. (2020). Complications in Pediatric Urology Minimally Invasive Surgery. In: Gargollo, P.C. (eds) Minimally Invasive and Robotic-Assisted Surgery in Pediatric Urology. Springer, Cham. https://doi.org/10.1007/978-3-030-57219-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57219-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57218-1

  • Online ISBN: 978-3-030-57219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics