Skip to main content

Abstract

Assessing systemic and pulmonary venous anatomy is a vital component of the echocardiographic evaluation of any patient with suspected congenital heart disease (CHD). Systemic and pulmonary venous anomalies can occur as known associations with both simple and complex forms of CHD, and their presence (or absence) can have important clinical implications. Moreover, knowledge of systemic and pulmonary venous return is necessary for accurately evaluating some of the more complex forms of CHD and for understanding the underlying physiology in such patients. Anyone evaluating possible systemic and pulmonary venous anomalies by echocardiography should have a comprehensive understanding of the normal anatomy of both systems, as well as the more common anomalies affecting each venous system and their associated hemodynamic alterations. Transesophageal echocardiography (TEE) is well suited for evaluating both systemic and pulmonary venous anatomy and anomalies thereof because of the proximity of the esophagus and imaging transducer to the sites of venous return and the atrial chambers. This chapter presents relevant aspects of systemic and pulmonary venous anatomy and a thorough discussion of congenital systemic and pulmonary venous anomalies, addressing their evaluation by TEE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

Ao:

Aortic

Asc:

Ascending

ASD:

Atrial septal defect

Atr:

Atrial

BCPA:

Bidirectional cavopulmonary anastomosis

CS:

Coronary sinus

Desc:

Descending

DTG:

Deep transgastric

Hep Veins:

Hepatic veins

IVC:

Inferior vena cava

LA:

Left atrium

LAA:

Left atrial appendage

LAX:

Long axis

Lf:

Left

LIV:

Left innominate vein

LLPV:

Left lower pulmonary vein

LPA:

Left pulmonary artery

LSVC:

Left superior vena cava

LUPV:

Left upper pulmonary vein

LV:

Left ventricle

ME:

Midesophageal

MRI:

Magnetic resonance imaging

PA:

Pulmonary artery

PAPVC:

Partial anomalous pulmonary venous connection

Pulm:

Pulmonary

RA:

Right atrium

RAA:

Right atrial appendage

RLPV:

Right lower pulmonary vein

RPA:

Right pulmonary artery

RSVC:

Right superior vena cava

Rt:

Right

RUPV:

Right upper pulmonary vein

RV:

Right ventricular

SAX:

Short axis

Sept:

Septal

SVC:

Superior vena cava

TAPVC:

Total anomalous pulmonary venous connection

TEE:

Transesophageal echocardiography

TG:

Transgastric

TTE:

Transthoracic echocardiography

UE:

Upper esophageal

References

  1. Geva T. Abnormal systemic venous connections. In: Allen HD, Shaddy RE, Penny DJ, Feltes TF, Cetta F, editors. Moss and Adams’ Heart disease in infants, children and adolescents: including the fetus and Young adult. 9th ed. Philadelphia: Wolters Kluwer; 2016. p. 911–34.

    Google Scholar 

  2. Brown DW, Geva T. Anomalies of the pulmonary veins. In: Allen HD, Shaddy RE, Penny DJ, Feltes TF, Cetta F, editors. Moss and Adams’ Heart disease in infants, children and adolescents: including the fetus and young adult. 9th ed. Philadelphia: Wolters Kluwer; 2016. p. 881–910.

    Google Scholar 

  3. Loogen F, Rippert R. Anomalies of the large body and lung veins. I. Z Kreislaufforsch. 1958;47:677–90.

    PubMed  CAS  Google Scholar 

  4. Stümper O, Vargas-Barron J, Rijlaarsdam M, et al. Assessment of anomalous systemic and pulmonary venous connections by transoesophageal echocardiography in infants and children. Br Heart J. 1991;66:411–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sonavane SK, Milner DM, Singh SP, Abdel Aal AK, Shahir KS, Chaturvedi A. Comprehensive imaging review of the superior vena cava. Radiographics. 2015;35:1873–92.

    Article  PubMed  Google Scholar 

  6. Masani ND. Transoesophageal echocardiography in adult congenital heart disease. Heart. 2001;86(Suppl 2):II30–40.

    PubMed  PubMed Central  Google Scholar 

  7. Ammash NM, Seward JB, Warnes CA, Connolly HM, O’Leary PW, Danielson GK. Partial anomalous pulmonary venous connection: diagnosis by transesophageal echocardiography. J Am Coll Cardiol. 1997;29:1351–8.

    Article  PubMed  CAS  Google Scholar 

  8. Reynolds T, Appleton CP. Doppler flow velocity patterns of the superior vena cava, inferior vena cava, hepatic vein, coronary sinus, and atrial septal defect: a guide for the echocardiographer. J Am Soc Echocardiogr. 1991;4:503–12.

    Article  PubMed  CAS  Google Scholar 

  9. Chavhan GB, Parra DA, Mann A, Navarro OM. Normal Doppler spectral waveforms of major pediatric vessels: specific patterns. Radiographics. 2008;28:691–706.

    Article  PubMed  Google Scholar 

  10. Scheinfeld MH, Bilali A, Koenigsberg M. Understanding the spectral Doppler waveform of the hepatic veins in health and disease. Radiographics. 2009;29:2081–98.

    Article  PubMed  Google Scholar 

  11. Ayabakan C, Ozkutlu S. Normal patterns of flow in the superior caval, hepatic and pulmonary veins as measured using Doppler echocardiography during childhood. Cardiol Young. 2003;13:143–51.

    Article  PubMed  Google Scholar 

  12. Meadows WR, Sharp JT. Persistent left superior vena cava draining into the left atrium without arterial oxygen unsaturation. Am J Cardiol. 1965;16:273–9.

    Article  PubMed  CAS  Google Scholar 

  13. Campbell M, Deuchar DC. The left-sided superior vena cava. Br Heart J. 1954;16:423–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Morrow WR, Smith VC, Ehler WJ, VanDellen AF, Mullins CE. Balloon angioplasty with stent implantation in experimental coarctation of the aorta. Circulation. 1994;89:2677–83.

    Article  PubMed  CAS  Google Scholar 

  15. Lang RM, Badano LP, Tsang W, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25:3–46.

    Article  PubMed  Google Scholar 

  16. Cha EM, Khoury GH. Persistent left superior vena cava. Radiologic and clinical significance. Radiology. 1972;103:375–81.

    Article  PubMed  CAS  Google Scholar 

  17. Sheikh AS, Mazhar S. Persistent left superior vena cava with absent right superior vena cava: review of the literature and clinical implications. Echocardiography. 2014;31:674–9.

    Article  PubMed  Google Scholar 

  18. Gandy K, Hanley F. Management of systemic venous anomalies in the pediatric cardiovascular surgical patient. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2006;9:63–74.

    Article  Google Scholar 

  19. Iyer GK, Van Arsdell GS, Dicke FP, McCrindle BW, Coles JG, Williams WG. Are bilateral superior vena cavae a risk factor for single ventricle palliation. Ann Thorac Surg. 2000;70:711–6.

    Article  PubMed  CAS  Google Scholar 

  20. Reddy VM, McElhinney DB, Moore P, Haas GS, Hanley FL. Outcomes after bidirectional cavopulmonary shunt in infants less than 6 months old. J Am Coll Cardiol. 1997;29:1365–70.

    Article  PubMed  CAS  Google Scholar 

  21. Rossi UG, Rigamonti P, Torcia P, et al. Congenital anomalies of superior vena cava and their implications in central venous catheterization. J Vasc Access. 2015;16:265–8.

    Article  PubMed  Google Scholar 

  22. Bernstein HS, Moore P, Stanger P, Silverman NH. The levoatriocardinal vein: morphology and echocardiographic identification of the pulmonary-systemic connection. J Am Coll Cardiol. 1995;26:995–1001.

    Article  PubMed  CAS  Google Scholar 

  23. Kaneda T, Onoe M, Matsuda M, Moriwaki S, Mori N. Patent levoatrial cardinal vein without left heart hypoplasia. Ann Thorac Surg. 2006;81:740–2.

    Article  PubMed  Google Scholar 

  24. Snider AR, Ports TA, Silverman NH. Venous anomalies of the coronary sinus: detection by M-mode, two-dimensional and contrast echocardiography. Circulation. 1979;60:721–7.

    Article  PubMed  CAS  Google Scholar 

  25. Stewart JA, Fraker TD, Slosky DA, Wise NK, Kisslo JA. Detection of persistent left superior vena cava by two-dimensional contrast echocardiography. J Clin Ultrasound. 1979;7:357–60.

    Article  PubMed  CAS  Google Scholar 

  26. van Son JA, Phoon CK, Silverman NH, Haas GS. Predicting feasibility of biventricular repair of right-dominant unbalanced atrioventricular canal. Ann Thorac Surg. 1997;63:1657–63.

    Article  PubMed  Google Scholar 

  27. Huhta JC, Smallhorn JF, Macartney FJ, Anderson RH, de Leval M. Cross-sectional echocardiographic diagnosis of systemic venous return. Br Heart J. 1982;48:388–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Marin-Garcia J, Sanmarti J, Moller JH. Congenital absence of the right superior vena cava: report of two cases. Eur J Cardiol. 1978;7:293–7.

    PubMed  CAS  Google Scholar 

  29. Lenox CC, Zuberbuhler JR, Park SC, et al. Absent right superior vena cava with persistent left superior vena cava: implications and management. Am J Cardiol. 1980;45:117–22.

    Article  PubMed  CAS  Google Scholar 

  30. Choi JY, Anderson RH, Macartney FJ. Absent right superior caval vein (vena cava) with normal atrial arrangement. Br Heart J. 1987;57:474–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gerlis LM, Ho SY. Anomalous subaortic position of the brachiocephalic (innominate) vein: a review of published reports and report of three new cases. Br Heart J. 1989;61:540–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Choi JY, Jung MJ, Kim YH, Noh CI, Yun YS. Anomalous subaortic position of the brachiocephalic vein (innominate vein): an echocardiographic study. Br Heart J. 1990;64:385–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Spirito P, Seidman CE, McKenna WJ, Maron BJ. The management of hypertrophic cardiomyopathy. N Engl J Med. 1997;336:775–85.

    Article  PubMed  CAS  Google Scholar 

  34. Kulkarni S, Jain S, Kasar P, Garekar S, Joshi S. Retroaortic left innominate vein - incidence, association with congenital heart defects, embryology, and clinical significance. Ann Pediatr Cardiol. 2008;1:139–41.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Polos PG, Wolf D, Harley RA, Strange C, Sahn SA. Pulmonary hypertension and human immunodeficiency virus infection. Two reports and review of the literature. Chest. 1992;101:474–8.

    Article  PubMed  CAS  Google Scholar 

  36. Davis WH, Jordaan FR, Snyman HW. Persistent left superior vena cava draining into the left atrium, as an isolated anomaly. Am Heart J. 1959;57:616–22.

    Article  PubMed  CAS  Google Scholar 

  37. Raghib G, Ruttenberg HD, Anderson RC, Amplatz K, Adams P, Edwards JE. Termination of left superior vena cava in left atrium, atrial septal defect, and absence of coronary sinus; a developmental complex. Circulation. 1965;31:906–18.

    Article  PubMed  CAS  Google Scholar 

  38. Bendaly EA, Batra AS, Ebenroth ES, Hurwitz RA. Outcome of cardiac thrombi in infants. Pediatr Cardiol. 2008;29:95–101.

    Article  PubMed  Google Scholar 

  39. Taybi H, Kurlander GJ, Lurie PR, Campbell JA. Anomalous systemic venous connection to the left atrium or to a pulmonary vein. Am J Roentgenol Radium Therapy Nucl Med. 1965;94:62–77.

    CAS  Google Scholar 

  40. Shumacker HB, King H, Waldhausen JA. The persistent left superior vena cava. Surgical implications, with special reference to caval drainage into the left atrium. Ann Surg. 1967;165:797–805.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schmidt KG, Silverman NH. Cross-sectional and contrast echocardiography in the diagnosis of interatrial communications through the coronary sinus. Int J Cardiol. 1987;16:193–9.

    Article  PubMed  CAS  Google Scholar 

  42. Rose AG, Beckman CB, Edwards JE. Communication between coronary sinus and left atrium. Br Heart J. 1974;36:182–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Beckman CB, Moller JH, Edwards JE. Alternate pathways to pulmonary venous flow in left-sided obstructive anomalies. Circulation. 1975;52:509–16.

    Article  PubMed  CAS  Google Scholar 

  44. de Leval MR, Ritter DG, McGoon DC, Danielson GK. Anomalous systemic venous connection. Surgical considerations. Mayo Clin Proc. 1975;50:599–610.

    PubMed  Google Scholar 

  45. Leys D, Manouvrier J, Dupard T, et al. Right superior vena cava draining into the left atrium with left superior vena cava draining into the right atrium. Br Med J (Clin Res Ed). 1986;293:855.

    Article  CAS  Google Scholar 

  46. Akalin H, Uysalel A, Ozyurda U, et al. The triad of persistent left superior vena cava connected to the coronary sinus, right superior vena cava draining into the left atrium, and atrial septal defect: report of a successful operation for a rare anomaly. J Thorac Cardiovasc Surg. 1987;94:151–3.

    Article  PubMed  CAS  Google Scholar 

  47. Van Praagh S, Geva T, Lock JE, Nido PJ, Vance MS, Van Praagh R. Biatrial or left atrial drainage of the right superior vena cava: anatomic, morphogenetic, and surgical considerations–report of three new cases and literature review. Pediatr Cardiol. 2003;24:350–63.

    Article  PubMed  Google Scholar 

  48. Oppido G, Pace Napoleone C, Turci S, et al. Right superior vena cava draining in the left atrium: anatomical, embryological, and surgical considerations. Ann Thorac Surg. 2006;81:2313–5.

    Article  PubMed  Google Scholar 

  49. Samir K, Fraisse A, Rauzier JM, Kreitmann B. Anomalus drainage of the right superior vena cava to the left atrium. Eur J Cardiothorac Surg. 2003;23:1051.

    Article  PubMed  Google Scholar 

  50. Mukhopadhyay S, Mehta V, Yusuf J, Rastogi V, Banerjee A, Trehan V. Anomalous drainage of the right superior vena cava into the left atrium. Indian Heart J. 2004;56:70–1.

    PubMed  Google Scholar 

  51. Recto MR, Sobczyk WL, Yeh T. Right superior vena cava draining predominantly into the left atrium causing cyanosis in a young child. Pediatr Cardiol. 2004;25:163–4.

    Article  PubMed  CAS  Google Scholar 

  52. Vassallo M, Pascotto M, Pisacane C, et al. Right superior vena cava draining into the left atrium: prenatal diagnosis and postnatal management. Ultrasound Obstet Gynecol. 2006;27:445–8.

    Article  PubMed  CAS  Google Scholar 

  53. Baggett C, Skeen SJ, Gantt DS, Trotter BR, Birkemeier KL. Isolated right superior vena cava drainage into the left atrium diagnosed noninvasively in the peripartum period. Tex Heart Inst J. 2009;36:611–4.

    PubMed  PubMed Central  Google Scholar 

  54. Anderson RC, Adams P, Burke B. Anomalous inferior vena cava with azygos continuation (infrahepatic interruption of the inferior vena cava). Report of 15 new cases. J Pediatr. 1961;59:370–83.

    Article  PubMed  CAS  Google Scholar 

  55. Applegate KE, Goske MJ, Pierce G, Murphy D. Situs revisited: imaging of the heterotaxy syndrome. Radiographics. 1999;19:837–52. discussion 853

    Article  PubMed  CAS  Google Scholar 

  56. Beedie RJ, Yeo W, Morcos SK. Congenital absence of the intrahepatic segment of the inferior vena cava with azygos continuation presenting as a mediastinal mass. Postgrad Med J. 1989;65:253–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Manzer R, Sutton RG, Ploessl J, Niles S, Behrendt D. Cardiopulmonary bypass venous cannulation challenges in a paediatric patient with complex congenital heart disease: a case report. Perfusion. 1997;12:203–6.

    Article  PubMed  CAS  Google Scholar 

  58. Corno A, George B, Pearl J, Laks H. Surgical options for complex transposition of the great arteries. J Am Coll Cardiol. 1989;14:742–9.

    Article  PubMed  CAS  Google Scholar 

  59. Baldridge ED, Canos AJ. Venous anomalies encountered in aortoiliac surgery. Arch Surg. 1987;122:1184–8.

    Article  PubMed  Google Scholar 

  60. Mayo J, Gray R, St Louis E, Grosman H, McLoughlin M, Wise D. Anomalies of the inferior vena cava. AJR Am J Roentgenol. 1983;140:339–45.

    Article  PubMed  CAS  Google Scholar 

  61. Haswell DM, Berrigan TJ. Anomalous inferior vena cava with accessory hemiazygos continuation. Radiology. 1976;119:51–54.

    Google Scholar 

  62. Hurwitt ES, Escher DJ, Citrin LI. Surgical correction of cyanosis due to entrance of left superior vena cava into left auricle. Surgery. 1955;38:903–14.

    PubMed  CAS  Google Scholar 

  63. Ho SY. Pulmonary vein ablation in atrial fibrillation: does anatomy matter? J Cardiovasc Electrophysiol. 2003;14:156–7.

    Article  PubMed  Google Scholar 

  64. Stanford W, Breen JF. CT evaluation of left atrial pulmonary venous anatomy. Int J Cardiovasc Imaging. 2005;21:133–9.

    Article  PubMed  Google Scholar 

  65. Wondrow MA, Bove AA, Holmes DRJ, Gray JE, Julsrud PR. Technical consideration for a new X-ray video progressive scanning system for cardiac catheterization. Catheter Cardiovasc Diagn. 1988;14:126–34.

    Article  CAS  Google Scholar 

  66. Puchalski MD, Lui GK, Miller-Hance WC, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination in children and all patients with congenital heart disease: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32:173–215.

    Article  PubMed  Google Scholar 

  67. Appleton CP. Hemodynamic determinants of Doppler pulmonary venous flow velocity components: new insights from studies in lightly sedated normal dogs. J Am Coll Cardiol. 1997;30:1562–74.

    Article  PubMed  CAS  Google Scholar 

  68. Grosse-Wortmann L, Al-Otay A, Goo HW, et al. Anatomical and functional evaluation of pulmonary veins in children by magnetic resonance imaging. J Am Coll Cardiol. 2007;49:993–1002.

    Article  PubMed  Google Scholar 

  69. Roman KS, Kellenberger CJ, Macgowan CK, et al. How is pulmonary arterial blood flow affected by pulmonary venous obstruction in children? A phase-contrast magnetic resonance study. Pediatr Radiol. 2005;35:580–6.

    Article  PubMed  Google Scholar 

  70. Healey JE. An anatomic survey of anomalous pulmonary veins: their clinical significance. J Thorac Surg. 1952;23:433–44.

    Article  PubMed  Google Scholar 

  71. Gustafson RA, Warden HE, Murray GF, Hill RC, Rozar GE. Partial anomalous pulmonary venous connection to the right side of the heart. J Thorac Cardiovasc Surg. 1989;98:861–8.

    Article  PubMed  CAS  Google Scholar 

  72. Senocak F, Ozme S, Bilgiç A, Ozkutlu S, Ozer S, Saraçlar M. Partial anomalous pulmonary venous return. Evaluation of 51 cases. Jpn Heart J. 1994;35:43–50.

    Article  PubMed  CAS  Google Scholar 

  73. Wong ML, McCrindle BW, Mota C, Smallhorn JF. Echocardiographic evaluation of partial anomalous pulmonary venous drainage. J Am Coll Cardiol. 1995;26:503–7.

    Article  PubMed  CAS  Google Scholar 

  74. Kiseleva IP, Malsagov GU. Differential diagnosis of anomalous pulmonary venous return. A clinical-roentgenological study. Cor Vasa. 1984;26:140–6.

    PubMed  CAS  Google Scholar 

  75. Hijii T, Fukushige J, Hara T. Diagnosis and management of partial anomalous pulmonary venous connection. A review of 28 pediatric cases. Cardiology. 1998;89:148–51.

    Article  PubMed  CAS  Google Scholar 

  76. Ferrari VA, Scott CH, Holland GA, Axel L, Sutton MS. Ultrafast three-dimensional contrast-enhanced magnetic resonance angiography and imaging in the diagnosis of partial anomalous pulmonary venous drainage. J Am Coll Cardiol. 2001;37:1120–8.

    Article  PubMed  CAS  Google Scholar 

  77. Mavroudis C. Atrial septal defect. In: Mavroudis C, Backer C, editors. Atlas of pediatric cardiac surgery. 1st ed. London: Springer; 2015. p. 89–98.

    Chapter  Google Scholar 

  78. Midyat L, Demir E, Aşkin M, et al. Eponym: scimitar syndrome. Eur J Pediatr. 2010;169:1171–7.

    Article  PubMed  Google Scholar 

  79. Brown JW, Ruzmetov M, Minnich DJ, et al. Surgical management of scimitar syndrome: an alternative approach. J Thorac Cardiovasc Surg. 2003;125:238–45.

    Article  PubMed  Google Scholar 

  80. Dupuis C, Charaf LA, Brevière GM, Abou P, Rémy-Jardin M, Helmius G. The “adult” form of the scimitar syndrome. Am J Cardiol. 1992;70:502–7.

    Article  PubMed  CAS  Google Scholar 

  81. Dupuis C, Charaf LA, Brevière GM, Abou P. “Infantile” form of the scimitar syndrome with pulmonary hypertension. Am J Cardiol. 1993;71:1326–30.

    Article  PubMed  CAS  Google Scholar 

  82. Holt PD, Berdon WE, Marans Z, Griffiths S, Hsu D. Scimitar vein draining to the left atrium and a historical review of the scimitar syndrome. Pediatr Radiol. 2004;34:409–13.

    Article  PubMed  Google Scholar 

  83. Idris MT. Diagnostic aid of transesophageal echocardiography in an adult case of scimitar syndrome: confirmation of the findings at surgery and review of the literature. J Am Soc Echocardiogr. 1998;11:387–92.

    Article  PubMed  CAS  Google Scholar 

  84. Utley JR, Noonan JA, Walters LR, Frist RA. Anomalous position of atrial septum with anomalous pulmonary and systemic venous drainage. Correction including ligation of persistent left superior vena cava. J Thorac Cardiovasc Surg. 1974;67:730–2.

    Article  PubMed  CAS  Google Scholar 

  85. Van Praagh S, Carrera ME, Sanders S, Mayer JE, Van Praagh R. Partial or total direct pulmonary venous drainage to right atrium due to malposition of septum primum. Anatomic and echocardiographic findings and surgical treatment: a study based on 36 cases. Chest. 1995;107:1488–98.

    Article  PubMed  Google Scholar 

  86. Cohen MS, Weinberg P, Coon PD, Gaynor JW, Rychik J. Deviation of atrial septum primum in association with normal left atrioventricular valve size. J Am Soc Echocardiogr. 2001;14:732–7.

    Article  PubMed  CAS  Google Scholar 

  87. Chin AJ, Weinberg PM, Barber G. Subcostal two-dimensional echocardiographic identification of anomalous attachment of septum primum in patients with left atrioventricular valve underdevelopment. J Am Coll Cardiol. 1990;15:678–81.

    Article  PubMed  CAS  Google Scholar 

  88. Ferencz C, Rubin JD, McCarter RJ, et al. Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. Am J Epidemiol. 1985;121:31–6.

    Article  PubMed  CAS  Google Scholar 

  89. Craig JM, Darling RC, Rothney WB. Total pulmonary venous drainage into the right side of the heart; report of 17 autopsied cases not associated with other major cardiovascular anomalies. Lab Investig. 1957;6:44–64.

    PubMed  CAS  Google Scholar 

  90. Jenkins KJ, Sanders SP, Orav EJ, Coleman EA, Mayer JE, Colan SD. Individual pulmonary vein size and survival in infants with totally anomalous pulmonary venous connection. J Am Coll Cardiol. 1993;22:201–6.

    Article  PubMed  CAS  Google Scholar 

  91. Frommelt PC, Stuth EA. Transesophageal echocardiographic in total anomalous pulmonary venous drainage: hypotension caused by compression of the pulmonary venous confluence during probe passage. J Am Soc Echocardiogr. 1994;7:652–4.

    Article  PubMed  CAS  Google Scholar 

  92. Chang YY, Chang CI, Wang MJ, et al. The safe use of intraoperative transesophageal echocardiography in the management of total anomalous pulmonary venous connection in newborns and infants: a case series. Paediatr Anaesth. 2005;15:939–43.

    Article  PubMed  Google Scholar 

  93. Reddy SC, Chopra PS, Rao PS. Mixed-type total anomalous pulmonary venous connection: echocardiographic limitations and angiographic advantages. Am Heart J. 1995;129:1034–8.

    Article  PubMed  CAS  Google Scholar 

  94. Bennetts J, Caldarone C. Partial and total anomalous pulmonary venous connection: surgical perspective. eMed Specialities Pediatr Cardiothorac Surg; 2006.

    Google Scholar 

  95. Neely JR, Rovetto MJ, Oram JF. Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis. 1972;15:289–329.

    Article  CAS  PubMed  Google Scholar 

  96. Karamlou T, Gurofsky R, Al Sukhni E, et al. Factors associated with mortality and reoperation in 377 children with total anomalous pulmonary venous connection. Circulation. 2007;115:1591–8.

    Article  PubMed  Google Scholar 

  97. Caldarone CA, Najm HK, Kadletz M, et al. Relentless pulmonary vein stenosis after repair of total anomalous pulmonary venous drainage. Ann Thorac Surg. 1998;66:1514–20.

    Article  PubMed  CAS  Google Scholar 

  98. Yun TJ, Coles JG, Konstantinov IE, et al. Conventional and sutureless techniques for management of the pulmonary veins: evolution of indications from postrepair pulmonary vein stenosis to primary pulmonary vein anomalies. J Thorac Cardiovasc Surg. 2005;129:167–74.

    Article  PubMed  Google Scholar 

  99. Yoshimura N, Fukahara K, Yamashita A, et al. Surgery for total anomalous pulmonary venous connection: primary sutureless repair vs. conventional repair. Gen Thorac Cardiovasc Surg. 2017;65:245–51.

    Article  PubMed  Google Scholar 

  100. Snider AR, Silverman NH, Turley K, Ebert PA. Evaluation of infradiaphragmatic total anomalous pulmonary venous connection with two-dimensional echocardiography. Circulation. 1982;66:1129–32.

    Article  PubMed  CAS  Google Scholar 

  101. Cooper MJ, Teitel DF, Silverman NH, Enderlein MA. Study of the infradiaphragmatic total anomalous pulmonary venous connection with cross-sectional and pulsed Doppler echocardiography. Circulation. 1984;70:412–6.

    Article  PubMed  CAS  Google Scholar 

  102. Smallhorn JF, Freedom RM. Pulsed Doppler echocardiography in the preoperative evaluation of total anomalous pulmonary venous connection. J Am Coll Cardiol. 1986;8:1413–20.

    Article  PubMed  CAS  Google Scholar 

  103. Stewart RD, Bailliard F, Kelle AM, Backer CL, Young L, Mavroudis C. Evolving surgical strategy for sinus venosus atrial septal defect: effect on sinus node function and late venous obstruction. Ann Thorac Surg. 2007;84:1651–5. discussion 1655

    Article  PubMed  Google Scholar 

  104. Alsoufi B, Cai S, Van Arsdell GS, Williams WG, Caldarone CA, Coles JG. Outcomes after surgical treatment of children with partial anomalous pulmonary venous connection. Ann Thorac Surg. 2007;84:2020–6. discussion 2025

    Article  PubMed  Google Scholar 

  105. Dusenbery SM, Geva T, Seale A, et al. Outcome predictors and implications for management of scimitar syndrome. Am Heart J. 2013;165:770–7.

    Article  PubMed  Google Scholar 

  106. Wang H, Kalfa D, Rosenbaum MS, et al. Scimitar syndrome in children and adults: natural history, outcomes, and risk analysis. Ann Thorac Surg. 2018;105:592–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiraz Arif Maskatia .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Image of the right atrial appendage (RAA) in a ME Bicaval view. The superior vena cava is seen to the right of the image display with a small amount of spontaneous contrast as it enters into the right atrium. The right pulmonary artery is displayed in cross-section (short axis) as it courses posterior to the SVC. The broad-based RAA is seen anteriorly (MP4 254 kb)

Image displaying the left atrial appendage (LAA) in a ME 2-Ch view. The left upper pulmonary vein is visible, and directly anterior to its entrance into the left atrium, the narrow-based LAA is seen. A mildly dilated coronary sinus is seen posteriorly along the atrioventricular groove (MP4 366 kb)

Transgastric view showing the hepatic veins entering the inferior vena cava in a nearly coronal plane. Please note that in this example the image has been up/down inverted from the standard transgastric image display. This view allows for optimal Doppler interrogation of hepatic venous flows (MP4 1009 kb)

TG IVC/Hep veins view obtained by advancing the imaging probe from the ME Bicaval view further into the lower esophagus/gastric region just beyond the level of the diaphragm. A hepatic vein is seen joining the inferior vena cava anteriorly and superiorly (MP4 399 kb)

Image obtained after advancing and retroflexing the imaging probe from the ME 4-Ch view showing the coronary sinus (CS) and its relation to the left atrium. Note the normal opening of the CS into the right atrium (MP4 424 kb)

ME Bicaval view after repair of a sinus venosus atrial septal defect. Color flow disturbance is seen near the cardiac end of the superior vena cava, suggesting obstruction. This led to further investigation and revision of the repair (MP4 783 kb)

ME 2-Ch view displaying a dilated coronary sinus in a patient undergoing mitral valve surgery (MP4 497 kb)

Image of a dilated coronary sinus (CS) in its longitudinal plane as it receives a left superior vena cava as shown by color flow mapping. This view can obtained after initially displaying the CS in short axis in the ME 4-Ch view and rotating the transducer angle forward to ~60°–80° (MP4 949 kb)

ME 2-Ch view of a coronary sinus atrial septal defect (MP4 431 kb)

ME Bicaval view showing commitment of a right superior vena cava to the left atrium. Color Doppler shows flow from the superior vena cava entering both the left atrium (larger red flow) and right atrium (smaller blue aliased flow) (MP4 368 kb)

TG IVC/Hep veins view in a patient with interrupted inferior vena cava with azygos continuation. Only the hepatic veins (not the IVC) are visible as they course through the liver. Refer to Video 6.4 for comparison (MP4 219 kb)

View in which the TEE probe is in a low esophageal retrocardiac position and has been rotated posteriorly to a sagittal plane. Two vascular structures are seen coursing adjacent to each other. Color Doppler shows pulsatile flow from the descending aorta directed caudally and a second structure, the azygos vein, which has venous flow coursing cranially (MP4 683 kb)

View of the azygos vein as it travels toward the superior vena cava (SVC). At a transducer angle of 90°, the distal azygos vein can be seen coursing over the right pulmonary artery, depicted in its short axis. Entry of the azygos vein into the SVC is not shown. This is a modified view obtained at the level of the upper esophagus (MP4 295 kb)

In this image at a transducer angle of 0°, the probe has been withdrawn and rotated to the left (counterclockwise) from the ME 4-Ch view to visualize—from posterior to anterior—the descending aorta (DAO), left upper pulmonary vein (LPV), and left atrial appendage (LAA) (MP4 610 kb)

ME Rt Pulm veins view obtained after the TEE probe was rotated rightward from the ME 4-Ch view to visualize the entrance of the right upper pulmonary vein into the left atrium (MP4 837 kb)

ME Lt Pulm veins view obtained as the probe shaft is turned leftward from the ME LAX view (transducer angle of 125°) to visualize both of the left-sided pulmonary veins (MP4 1020 kb)

View of the right pulmonary veins from the midesophageal position (transducer angle of 28°), with color flow mapping as they enter the left atrium. This view can be obtained with rightward rotation of the probe after the ME RV In-Out view has been obtained and the transducer angle adjusted to ~30°–50°. The right upper pulmonary vein is to the far right of the image and the right lower pulmonary vein to the far left (MP4 707 kb)

Image depicts a teardrop shape caused by an anomalous right upper pulmonary vein (RUPV) as it entered the superior vena cava (SVC). A change of the SVC from a round to a teardrop shape during real-time imaging is highly suggestive of an anomalous connection of the RUPV to the SVC. This view was obtained as the probe was rotated to the right from the ME Asc Ao SAX view (MP4 229 kb)

ME 4-Ch view with clockwise probe rotation after a Warden procedure, depicting the laminar flow across the rerouted anomalous right pulmonary vein by color Doppler (red flow) and the atrial septal patch. The repair incorporated the anomalous right pulmonary venous flow into the left atrium while patching the atrial septal defect (MP4 2666 kb)

Midesophageal view (transducer angle of 29°) displaying color Doppler interrogation of a pulmonary venous baffle after two-patch repair of a sinus venosus atrial septal defect and partial anomalous pulmonary venous connection (MP4 806 kb)

ME Bicaval view obtained from the same patient shown in Video 6.19, depicting flow across the superior vena cava into the right atrium (MP4 893 kb)

ME Bicaval view displaying a patch that incorporates the anomalous pulmonary venous return into the left atrium while separating the atria. Note the unobstructed pulmonary venous flow (MP4 832 kb)

ME Bicaval view showing flow (blue signal) across the anterior superior vena cava to right atrial appendage connection in the same patient depicted in Video 6.22 (MP4 6278 kb)

DTG Atr Sept view (transducer angle of 110°) depicting turbulent color flow from an anomalous right lower pulmonary vein or Scimitar vein, draining into the posterior aspect of the inferior vena cava just above the diaphragm (MP4 538 kb)

ME 4-Ch view in an infant with hypoplastic left heart syndrome. In the first few frames, the position of the septum primum appears normal. However, as the probe is withdrawn within the esophagus, the unusual left-shifted orientation of the septum primum becomes apparent, as seen in later frames (MP4 746 kb)

Midesophageal view (transducer angle of 72°) oriented to identify the right pulmonary veins. The close relationship between the pulmonary veins (red flow) and pulmonary arteries (blue flow) is evident in this image—the pulmonary artery being directly anterior and usually slightly superior to the pulmonary veins (MP4 291 kb)

Representative sweep in an infant with total anomalous pulmonary venous connection to the left innominate vein. The exam starts at the ME 4-Ch view. From this window, modified views at the level of the mid esophagus display the right upper and lower pulmonary veins (RUPV, RLPV), and the left pulmonary veins (LPVs) are seen returning to a large horizontal confluence. A large vertical vein (VV) arises from the left side of the confluence and travels anteriorly and superiorly, coursing over the left pulmonary artery (LPA) to insert into the left innominate vein (Inn V). The length of the vertical vein is best seen in the sagittal plane with leftward rotation of the probe (UE Ao Arch SAX view). Pulmonary venous return is not obstructed at any point. A catheter placed in the left internal jugular vein is seen in the vertical vein by 2D imaging. This video includes prominent electrocautery and Doppler mirror image artifacts. MPA main pulmonary artery (MP4 8294 kb)

In this ME 4-Ch view, a pulmonary venous confluence in an infant with total anomalous pulmonary return is shown adjacent to the left atrium (circular posterior structure) (MP4 722 kb)

Orthogonal view from that shown in Video 6.28. Color flow Doppler interrogation of the pulmonary venous confluence as displayed in the long axis. The blue flow away from the imaging transducer suggests an infradiaphragmatic course (MP4 425 kb)

ME 4-Ch view with clockwise transducer rotation showing anomalous direct drainage of a right lower pulmonary vein into the right atrium (MP4 359 kb)

ME 4-Ch view of a dilated coronary sinus (CS) in a patient with total anomalous pulmonary venous connection to the CS (MP4 738 kb)

Image in the mid esophagus at a transducer angle of 54° focusing on the right pulmonary veins after direct anastomosis of the pulmonary venous confluence to the left atrium. Torsion of the anastomosis resulted in localized narrowing of the right upper pulmonary vein (MP4 939 kb)

Corresponding image to that displayed in Video 6.32. Color flow Doppler across the right upper pulmonary vein reveals narrowing resulting from torsion of the pulmonary venous confluence to the left atrial anastomosis (MP4 191 kb)

ME 4-Ch view displaying the anastomotic connection between a pulmonary venous confluence and the left atrium in an infant with supracardiac total anomalous pulmonary venous connection. The anastomotic site appears widely patent by 2D imaging (MP4 713 kb)

Case #1. Sweep up to the upper esophagus to the level of the right pulmonary artery displaying the teardrop appearance of the superior vena cava (SVC) at the site of entry of an anomalous pulmonary vein. Note the presence of a central venous catheter in the SVC (MP4 3858 kb)

Case #1. Color flow Doppler of the image displayed in Video 6.35. The blue flow corresponds to the right pulmonary artery and the red flow to the anomalous right upper pulmonary vein as it enters the superior vena cava (MP4 3917 kb)

Case #1. Image obtained with clockwise probe rotation from the ME Asc Ao SAX view in the same patient depicted in Videos 6.35 and 6.36 showing the sinus venosus atrial septal defect and anomalous drainage of right upper pulmonary vein into the junction of the superior vena cava and right atrium (MP4 3060 kb)

Case #1. DTG Atr septal view with color flow Doppler confirms the presence of a sinus venosus atrial septal defect and associated anomalous drainage of a right upper pulmonary vein (MP4 609 kb)

Case #1. Initial postoperative TEE (repair using two-patch technique) in a modified ME view in the same patient depicted in Video 6.38 showing a patent pulmonary venous baffle with unobstructed flow by color flow mapping. Note atrial septal defect patch (MP4 2956 kb)

Case #1. Imaging of the superior vena cava in the same patient depicted in Video 6.39 in the DTG Atr Sept view with color flow Doppler. No color flow disturbance is observed; however, spectral interrogation was consistent with obstruction, which was confirmed by direct pressure measurement resulting in return to cardiopulmonary bypass (MP4 3472 kb)

Case #2. Initial preoperative TEE in the TG IVC/Hep veins view showing anomalous drainage of a right lower pulmonary vein (red flow) into a dilated inferior vena cava. The pulmonary vein appears smaller as compared to a dilated hepatic vein (MP4 1027 kb)

Case #2. Initial postoperative image in the patient depicted in Video 6.41 after bovine pericardial baffling of anomalous right lower pulmonary vein into the left atrium. The TG IVC/Hep veins view shows a mobile inferior vena cava portion of the baffle by 2D imaging (MP4 3779 kb)

Case #2. Corresponding TG IVC/Hep veins view to Video 6.42 shows unobstructed flow across the inferior vena cava portion of the baffle by color flow Doppler (red flow) (MP4 2201 kb)

Case #2. Preoperative TEE during second surgery with ME imaging at a transducer angle of 0° showing a pedunculated, mobile thrombus in the systemic venous aspect of the baffle (MP4 3699 kb)

Case #2. Imaging of the pulmonary venous aspect of the baffle in the patient displayed in Video 6.44 shows thickening and mild obstruction by color flow Doppler imaging (MP4 5879 kb)

Case #2. Postoperative TEE during second surgery for baffle revision with image obtained at a transducer angle of 74° shows no residual thrombus (MP4 1272 kb)

Case #2. Color flow Doppler corresponding to image displayed in Video 6.46 shows mild flow disturbance of the pulmonary venous end of the baffle (MP4 744 kb)

Case #2. Preoperative TEE during third surgical intervention displaying a sweep in the ME 4-Ch view and as the probe shaft is rotated rightward, showing the recurrence of a large, broad-based thrombus on the systemic and pulmonary venous aspects of the baffle in the same patient depicted in Videos 6.426.47 (MP4 12578 kb)

Case #2. Color flow imaging of the pulmonary venous pathway at a transducer angle of 91° obtained at the same time as the exam in this Video shows narrowing and aliasing consistent with recurrent obstruction (MP4 3926 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tacy, T.A., Maskatia, S.A. (2021). Systemic and Pulmonary Venous Anomalies. In: Wong, P.C., Miller-Hance, W.C. (eds) Transesophageal Echocardiography for Pediatric and Congenital Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-57193-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57193-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57192-4

  • Online ISBN: 978-3-030-57193-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics