Skip to main content
  • 1271 Accesses

Abstract

The noninvasive echocardiographic evaluation of ventricular performance is an essential tool in the clinician’s assessment and management of children and adults with congenital heart disease (CHD). However, the unique anatomic and physiologic features in these patients, which include nonstandard ventricular geometries as well as variable loading conditions, can make the quantitative assessment of ventricular function challenging, particularly by transesophageal echocardiography (TEE). Newer echocardiographic methods are enabling more accurate and quantitative evaluation of ventricular performance, both by the transthoracic as well as transesophageal approach. This chapter discusses the current applications of TEE in the evaluation of ventricular function in patients with CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ABD:

Automated border detection

Ch:

Chamber

CHD:

Congenital heart disease

dP/dt:

Change in pressure divided by change in time

EF:

Ejection fraction

ET:

Ejection time

FAC:

Fractional area change

IVCT:

Isovolumic contraction time

IVRT:

Isovolumic relaxation time

LA:

Left atrium

LAX:

Long-axis

LV:

Left ventricular

LVEDD:

Left ventricular end-diastolic dimension

LVEDV:

Left ventricular end-diastolic volume

LVESD:

Left ventricular end-systolic dimension

LVESV:

Left ventricular end-systolic volume

LVET:

Left ventricular ejection time

ME:

Midesophageal

MPI:

Myocardial performance index

RV:

Right ventricular

SAX:

Short-axis

SF:

Shortening fraction

TDI:

Tissue Doppler imaging

TEE:

Transesophageal echocardiography

TG:

Transgastric

TTE:

Transthoracic echocardiography

References

  1. Cyran SE, Kimball TR, Meyer RA, Bailey WW, Lowe E, Balisteri WF, et al. Efficacy of intraoperative transesophageal echocardiography in children with congenital heart disease. Am J Cardiol. 1989;63(9):594–8.

    Article  PubMed  CAS  Google Scholar 

  2. Ritter SB. Transesophageal echocardiography in children: new peephole to the heart. J Am Coll Cardiol. 1990;16(2):447–50.

    Article  PubMed  CAS  Google Scholar 

  3. Stümper OF, Elzenga NJ, Hess J, Sutherland GR. Transesophageal echocardiography in children with congenital heart disease: an initial experience. J Am Coll Cardiol. 1990;16(2):433–41.

    Article  PubMed  Google Scholar 

  4. Ungerleider RM, Greeley WJ, Sheikh KH, Philips J, Pearce FB, Kern FH, et al. Routine use of intraoperative epicardial echocardiography and Doppler color flow imaging to guide and evaluate repair of congenital heart lesions. A prospective study. J Thorac Cardiovasc Surg. 1990;100(2):297–309.

    Article  PubMed  CAS  Google Scholar 

  5. Fyfe DA, Kline CH, Sade RM, Greene CA, Gillette PC. The utility of transesophageal echocardiography during and after Fontan operations in small children. Am Heart J. 1991;122(5):1403–15.

    Article  PubMed  CAS  Google Scholar 

  6. Stevenson JG, Sorensen GK, Gartman DM, Hall DG, Rittenhouse EA. Transesophageal echocardiography during repair of congenital cardiac defects: identification of residual problems necessitating reoperation. J Am Soc Echocardiogr. 1993;6(4):356–65.

    Article  PubMed  CAS  Google Scholar 

  7. Stevenson JG. Role of intraoperative transesophageal echocardiography during repair of congenital cardiac defects. Acta Paediatr Suppl. 1995;410:23–33.

    Article  PubMed  CAS  Google Scholar 

  8. Ninomiya J, Yamauchi H, Hosaka H, Ishii Y, Terada K, Sugimoto T, et al. Continuous transoesophageal echocardiography monitoring during weaning from cardiopulmonary bypass in children. Cardiovasc Surg. 1997;5(1):129–33.

    Article  PubMed  CAS  Google Scholar 

  9. Rice MJ, McDonald RW, Li X, Shen I, Ungerleider RM, Sahn DJ. New technology and methodologies for intraoperative, perioperative, and intraprocedural monitoring of surgical and catheter interventions for congenital heart disease. Echocardiography. 2002;19(8):725–34.

    Article  PubMed  Google Scholar 

  10. Stumper O, Witsenburg M, Sutherland GR, Cromme-Dijkhuis A, Godman MJ, Hess J. Transesophageal echocardiographic monitoring of interventional cardiac catheterization in children. J Am Coll Cardiol. 1991;18(6):1506–14.

    Article  PubMed  CAS  Google Scholar 

  11. Tumbarello R, Sanna A, Cardu G, Bande A, Napoleone A, Bini RM. Usefulness of transesophageal echocardiography in the pediatric catheterization laboratory. Am J Cardiol. 1993;71(15):1321–5.

    Article  PubMed  CAS  Google Scholar 

  12. Ludomirsky A. The use of echocardiography in pediatric interventional cardiac catheterization procedures. J Interv Cardiol. 1995;8(5):569–78.

    Article  PubMed  CAS  Google Scholar 

  13. Rigby ML. Transoesophageal echocardiography during interventional cardiac catheterisation in congenital heart disease. Heart. 2001;86(Suppl 2):II23–9.

    PubMed  PubMed Central  Google Scholar 

  14. Simon P, Mohl W. Intraoperative echocardiographic assessment of global and regional myocardial function. Echocardiography. 1990;7(3):333–41.

    Article  PubMed  CAS  Google Scholar 

  15. Skiles JA, Griffin BP. Transesophageal echocardiographic (TEE) evaluation of ventricular function. Cardiol Clin. 2000;18(4):681–97.

    Article  PubMed  CAS  Google Scholar 

  16. Puchalski MD, Lui GK, Miller-Hance WC, Brook MM, Young LT, Bhat A, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination in children and all patients with congenital heart disease: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(2):173–215.

    Article  PubMed  Google Scholar 

  17. Abel MD, Nishimura RA, Callahan MJ, Rehder K, Ilstrup DM, Tajik AJ. Evaluation of intraoperative transesophageal two-dimensional echocardiography. Anesthesiology. 1987;66(1):64–8.

    Article  PubMed  CAS  Google Scholar 

  18. Nishimura RA, Abel MD, Housmans PR, Warnes CA, Tajik AJ. Mitral flow velocity curves as a function of different loading conditions: evaluation by intraoperative transesophageal Doppler echocardiography. J Am Soc Echocardiogr. 1989;2(2):79–87.

    Article  PubMed  CAS  Google Scholar 

  19. Kuecherer HF, Muhiudeen IA, Kusumoto FM, Lee E, Moulinier LE, Cahalan MK, et al. Estimation of mean left atrial pressure from transesophageal pulsed Doppler echocardiography of pulmonary venous flow. Circulation. 1990;82(4):1127–39.

    Article  PubMed  CAS  Google Scholar 

  20. Kuecherer HF, Kusumoto F, Muhiudeen IA, Cahalan MK, Schiller NB. Pulmonary venous flow patterns by transesophageal pulsed Doppler echocardiography: relation to parameters of left ventricular systolic and diastolic function. Am Heart J. 1991;122(6):1683–93.

    Article  PubMed  CAS  Google Scholar 

  21. Muhiudeen IA, Kuecherer HF, Lee E, Cahalan MK, Schiller NB. Intraoperative estimation of cardiac output by transesophageal pulsed Doppler echocardiography. Anesthesiology. 1991;74(1):9–14.

    Article  PubMed  CAS  Google Scholar 

  22. Savino JS, Troianos CA, Aukburg S, Weiss R, Reichek N. Measurement of pulmonary blood flow with transesophageal two-dimensional and Doppler echocardiography. Anesthesiology. 1991;75(3):445–51.

    Article  PubMed  CAS  Google Scholar 

  23. Gorcsan J 3rd, Diana P, Ball BA, Hattler BG. Intraoperative determination of cardiac output by transesophageal continuous wave Doppler. Am Heart J. 1992;123(1):171–6.

    Article  PubMed  Google Scholar 

  24. Smith MD, MacPhail B, Harrison MR, Lenhoff SJ, DeMaria AN. Value and limitations of transesophageal echocardiography in determination of left ventricular volumes and ejection fraction. J Am Coll Cardiol. 1992;19(6):1213–22.

    Article  PubMed  CAS  Google Scholar 

  25. Stoddard MF, Dillon S, Peters G, Kupersmith J. Left ventricular ejection fraction is increased during transesophageal echocardiography in patients with impaired ventricular function. Am Heart J. 1992;123(4 Pt 1):1005–10.

    Article  PubMed  CAS  Google Scholar 

  26. Doerr HK, Quinones MA, Zoghbi WA. Accurate determination of left ventricular ejection fraction by transesophageal echocardiography with a nonvolumetric method. J Am Soc Echocardiogr. 1993;6(5):476–81.

    Article  PubMed  CAS  Google Scholar 

  27. Kuecherer HF, Foster E. Hemodynamics by transesophageal echocardiography. Cardiol Clin. 1993;11(3):475–87.

    Article  PubMed  CAS  Google Scholar 

  28. Rafferty T, Durkin M, Harris S, Elefteriades J, Hines R, Prokop E, et al. Transesophageal two-dimensional echocardiographic analysis of right ventricular systolic performance indices during coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 1993;7(2):160–6.

    Article  PubMed  CAS  Google Scholar 

  29. Sutton DC, Cahalan MK. Intraoperative assessment of left ventricular function with transesophageal echocardiography. Cardiol Clin. 1993;11(3):389–98.

    Article  PubMed  CAS  Google Scholar 

  30. Darmon PL, Hillel Z, Mogtader A, Mindich B, Thys D. Cardiac output by transesophageal echocardiography using continuous-wave Doppler across the aortic valve. Anesthesiology. 1994;80(4):796–805.

    Article  PubMed  CAS  Google Scholar 

  31. Pu M, Griffin BP, Vandervoort PM, Leung DY, Cosgrove DM 3rd, Thomas JD. Intraoperative validation of mitral inflow determination by transesophageal echocardiography: comparison of single-plane, biplane and thermodilution techniques. J Am Coll Cardiol. 1995;26(4):1047–53.

    Article  PubMed  CAS  Google Scholar 

  32. Hozumi T, Yoshikawa J. Three-dimensional echocardiography using a muliplane transesophageal probe: the clinical applications. Echocardiography. 2000;17(8):757–64.

    Article  PubMed  CAS  Google Scholar 

  33. Troianos CA, Porembka DT. Assessment of left ventricular function and hemodynamics with transesophageal echocardiography. Crit Care Clin. 1996;12(2):253–72.

    Article  PubMed  CAS  Google Scholar 

  34. Kuhl HP, Franke A, Frielingsdorf J, Flaskamp C, Krebs W, Flachskampf FA, et al. Determination of left ventricular mass and circumferential wall thickness by three-dimensional reconstruction: in vitro validation of a new method that uses a multiplane transesophageal transducer. J Am Soc Echocardiogr. 1997;10(2):107–19.

    Article  PubMed  CAS  Google Scholar 

  35. Kuhl HP, Franke A, Janssens U, Merx M, Graf J, Krebs W, et al. Three-dimensional echocardiographic determination of left ventricular volumes and function by multiplane transesophageal transducer: dynamic in vitro validation and in vivo comparison with angiography and thermodilution. J Am Soc Echocardiogr. 1998;11(12):1113–24.

    Article  PubMed  CAS  Google Scholar 

  36. Ochiai Y, Morita S, Tanoue Y, Kawachi Y, Tominaga R, Yasui H. Use of transesophageal echocardiography for postoperative evaluation of right ventricular function. Ann Thorac Surg. 1999;67(1):146–52.

    Article  PubMed  CAS  Google Scholar 

  37. Poelaert J, Schmidt C, Van Aken H, Hinder F, Mollhoff T, Loick HM. A comparison of transoesophageal echocardiographic Doppler across the aortic valve and the thermodilution technique for estimating cardiac output. Anaesthesia. 1999;54(2):128–36.

    Article  PubMed  CAS  Google Scholar 

  38. Kubota H, Furuse A, Kotsuka Y, Ninomiya M, Miyaji K, Endo M, et al. Cardiac function evaluated by transesophageal echocardiography during cardiopulmonary bypass. Jpn J Thorac Cardiovasc Surg. 2000;48(5):261–6.

    Article  PubMed  CAS  Google Scholar 

  39. Schiller NB. Hemodynamics derived from transesophageal echocardiography (TEE). Cardiol Clin. 2000;18(4):699–709.

    Article  PubMed  CAS  Google Scholar 

  40. Simmons LA, Weidemann F, Sutherland GR, D’Hooge J, Bijnens B, Sergeant P, et al. Doppler tissue velocity, strain, and strain rate imaging with transesophageal echocardiography in the operating room: a feasibility study. J Am Soc Echocardiogr. 2002;15(8):768–76.

    Article  PubMed  Google Scholar 

  41. Swaminathan M, Phillips-Bute BG, Mathew JP. An assessment of two different methods of left ventricular ejection time measurement by transesophageal echocardiography. Anesth Analg. 2003;97(3):642–7.

    Article  PubMed  Google Scholar 

  42. Poelaert JI, Schupfer G. Hemodynamic monitoring utilizing transesophageal echocardiography: the relationships among pressure, flow, and function. Chest. 2005;127(1):379–90.

    Article  PubMed  Google Scholar 

  43. Chen C, Rodriguez L, Guerrero JL, Marshall S, Levine RA, Weyman AE, et al. Noninvasive estimation of the instantaneous first derivative of left ventricular pressure using continuous-wave Doppler echocardiography. Circulation. 1991;83(6):2101–10.

    Article  PubMed  CAS  Google Scholar 

  44. Greim CA, Roewer N, Laux G, Schulte am Esch J. On-line estimation of left ventricular stroke volume using transoesophageal echocardiography and acoustic quantification. Br J Anaesth. 1996;77(3):365–9.

    Article  PubMed  CAS  Google Scholar 

  45. Rhodes J, Marx GR, Tardif JC, Romero BA, Robinson A, Acar P, et al. Evaluation of ventricular dP/dt before and after open heart surgery using transesophageal echocardiography. Echocardiography. 1997;14(1):15–22.

    Article  PubMed  Google Scholar 

  46. Declerck C, Hillel Z, Shih H, Kuroda M, Connery CP, Thys DM. A comparison of left ventricular performance indices measured by transesophageal echocardiography with automated border detection. Anesthesiology. 1998;89(2):341–9.

    Article  PubMed  CAS  Google Scholar 

  47. Kotoh K, Watanabe G, Ueyama K, Uozaki M, Suzuki M, Misaki T, et al. On-line assessment of regional ventricular wall motion by transesophageal echocardiography with color kinesis during minimally invasive coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1999;117(5):912–7.

    Article  PubMed  CAS  Google Scholar 

  48. Vermes E, Houel R, Simon M, Le Besnerais P, Loisance D. Doppler tissue imaging to predict myocardial recovery during mechanical circulatory support. Ann Thorac Surg. 2000;70(6):2149–51.

    Article  PubMed  CAS  Google Scholar 

  49. Skarvan K, Filipovic M, Wang J, Brett W, Seeberger M. Use of myocardial tissue Doppler imaging for intraoperative monitoring of left ventricular function. Br J Anaesth. 2003;91(4):473–80.

    Article  PubMed  CAS  Google Scholar 

  50. Skulstad H, Andersen K, Edvardsen T, Rein KA, Tonnessen TI, Hol PK, et al. Detection of ischemia and new insight into left ventricular physiology by strain Doppler and tissue velocity imaging: assessment during coronary bypass operation of the beating heart. J Am Soc Echocardiogr. 2004;17(12):1225–33.

    Article  PubMed  Google Scholar 

  51. David JS, Tousignant CP, Bowry R. Tricuspid annular velocity in patients undergoing cardiac operation using transesophageal echocardiography. J Am Soc Echocardiogr. 2006;19(3):329–34.

    Article  PubMed  Google Scholar 

  52. Borow KM, Neumann A, Marcus RH, Sareli P, Lang RM. Effects of simultaneous alterations in preload and afterload on measurements of left ventricular contractility in patients with dilated cardiomyopathy: comparisons of ejection phase, isovolumetric and end-systolic force-velocity indexes. J Am Coll Cardiol. 1992;20(4):787–95.

    Article  PubMed  CAS  Google Scholar 

  53. Kimball TR, Daniels SR, Loggie JM, Khoury P, Meyer RA. Relation of left ventricular mass, preload, afterload and contractility in pediatric patients with essential hypertension. J Am Coll Cardiol. 1993;21(4):997–1001.

    Article  PubMed  CAS  Google Scholar 

  54. Rowland DG, Gutgesell HP. Noninvasive assessment of myocardial contractility, preload, and afterload in healthy newborn infants. Am J Cardiol. 1995;75(12):818–21.

    Article  PubMed  CAS  Google Scholar 

  55. Kjaergaard J, Snyder EM, Hassager C, Oh JK, Johnson BD. Impact of preload and afterload on global and regional right ventricular function and pressure: a quantitative echocardiography study. J Am Soc Echocardiogr. 2006;19(5):515–21.

    Article  PubMed  Google Scholar 

  56. Ozdemir K, Balci S, Duzenli MA, Can I, Yazici M, Aygul N, et al. Effect of preload and heart rate on the doppler and tissue doppler-derived myocardial performance index. Clin Cardiol. 2007;30(7):342–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bailey JM, Shanewise JS, Kikura M, Sharma S. A comparison of transesophageal and transthoracic echocardiographic assessment of left ventricular function in pediatric patients with congenital heart disease. J Cardiothorac Vasc Anesth. 1995;9(6):665–9.

    Article  PubMed  CAS  Google Scholar 

  58. Silverman NH, Ports TA, Snider AR, Schiller NB, Carlsson E, Heilbron DC. Determination of left ventricular volume in children: echocardiographic and angiographic comparisons. Circulation. 1980;62(3):548–57.

    Article  PubMed  CAS  Google Scholar 

  59. Quinones MA, Waggoner AD, Reduto LA, Nelson JG, Young JB, Winters WL Jr, et al. A new, simplified and accurate method for determining ejection fraction with two-dimensional echocardiography. Circulation. 1981;64(4):744–53.

    Article  PubMed  CAS  Google Scholar 

  60. Mercier JC, DiSessa TG, Jarmakani JM, Nakanishi T, Hiraishi S, Isabel-Jones J, et al. Two-dimensional echocardiographic assessment of left ventricular volumes and ejection fraction in children. Circulation. 1982;65(5):962–9.

    Article  PubMed  CAS  Google Scholar 

  61. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2(5):358–67.

    Article  CAS  PubMed  Google Scholar 

  62. Harrison MR, Clifton GD, Berk MR, DeMaria AN. Effect of blood pressure and afterload on Doppler echocardiographic measurements of left ventricular systolic function in normal subjects. Am J Cardiol. 1989;64(14):905–8.

    Article  PubMed  CAS  Google Scholar 

  63. Bashein G, Sheehan FH, Nessly ML, Detmer PR, Martin RW. Three-dimensional transesophageal echocardiography for depiction of regional left-ventricular performance: initial results and future directions. Int J Card Imaging. 1993;9(2):121–31.

    Article  PubMed  CAS  Google Scholar 

  64. Keller AM. Positional localization: three-dimensional transthoracic echocardiographic techniques for the measurement of cardiac mass, volume, and function. Echocardiography. 2000;17(8):745–8.

    Article  PubMed  CAS  Google Scholar 

  65. Mizelle KM, Rice MJ, Sahn DJ. Clinical use of real-time three-dimensional echocardiography in pediatric cardiology. Echocardiography. 2000;17(8):787–90.

    Article  PubMed  CAS  Google Scholar 

  66. Azran MS, Kwong R, Chen FY, Shernan SK. A potential use for intraoperative three-dimensional transesophageal echocardiography in predicting left ventricular chamber dimensions and ejection fraction after aneurysm resection. Anesth Analg. 2010;111(6):1362–5.

    Article  PubMed  Google Scholar 

  67. Cowie B, Kluger R, Kalpokas M. Left ventricular volume and ejection fraction assessment with transoesophageal echocardiography: 2D vs 3D imaging. Br J Anaesth. 2013;110(2):201–6.

    Article  PubMed  CAS  Google Scholar 

  68. Grossgasteiger M, Hien MD, Graser B, Rauch H, Gondan M, Motsch J, et al. Assessment of left ventricular size and function during cardiac surgery. An intraoperative evaluation of six two-dimensional echocardiographic methods with real time three-dimensional echocardiography as a reference. Echocardiography. 2013;30(6):672–81.

    Article  PubMed  Google Scholar 

  69. Meris A, Santambrogio L, Casso G, Mauri R, Engeler A, Cassina T. Intraoperative three-dimensional versus two-dimensional echocardiography for left ventricular assessment. Anesth Analg. 2014;118(4):711–20.

    Article  PubMed  Google Scholar 

  70. Simpson J, Lopez L, Acar P, Friedberg MK, Khoo NS, Ko HH, et al. Three-dimensional echocardiography in congenital heart disease: an expert consensus document from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017;30(1):1–27.

    Article  PubMed  Google Scholar 

  71. Jungwirth B, Mackensen GB. Real-time 3-dimensional echocardiography in the operating room. Semin Cardiothorac Vasc Anesth. 2008;12(4):248–64.

    Article  PubMed  Google Scholar 

  72. Fischer GW, Anyanwu AC, Adams DH. Change in surgical management as a consequence of real-time 3D TEE: assessment of left ventricular function. Semin Cardiothorac Vasc Anesth. 2009;13(4):238–40.

    Article  PubMed  Google Scholar 

  73. Aggarwal N, Unnikrishnan KP, Biswas I, Karunakaran J, Suneel PR. Intraoperative assessment of transient and persistent regional left ventricular wall motion abnormalities in patients undergoing coronary revascularization surgery using real time three-dimensional transesophageal echocardiography: a prospective observational study. Echocardiography. 2017;34(11):1649–59.

    Article  PubMed  Google Scholar 

  74. Karnwal A, Kakazu CZ, Shah S, Omari B, Arora CD. Utilization of intraoperative real-time three-dimensional transoesophageal echocardiography to objectively assess improvement in synchronization and regional wall motion after coronary reperfusion. J Clin Diagn Res. 2017;11(3):TD01–TD2.

    PubMed  PubMed Central  Google Scholar 

  75. Turton EW, Ender J. Role of 3D echocardiography in cardiac surgery: strengths and limitations. Curr Anesthesiol Rep. 2017;7(3):291–8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Simpson JM, Miller O. Three-dimensional echocardiography in congenital heart disease. Arch Cardiovasc Dis. 2011;104(1):45–56.

    Article  PubMed  Google Scholar 

  77. Shirali GS. Three-dimensional echocardiography in congenital heart disease. Echocardiography. 2012;29(2):242–8.

    Article  PubMed  Google Scholar 

  78. Zhang L, Xie M, Balluz R, Ge S. Real time three-dimensional echocardiography for evaluation of congenital heart defects: state of the art. Echocardiography. 2012;29(2):232–41.

    Article  PubMed  Google Scholar 

  79. Simpson JM. Three-dimensional echocardiography in congenital heart disease: the next steps. Arch Cardiovasc Dis. 2016;109(2):81–3.

    Article  PubMed  Google Scholar 

  80. Perez JE, Waggoner AD, Barzilai B, Melton HE Jr, Miller JG, Sobel BE. On-line assessment of ventricular function by automatic boundary detection and ultrasonic backscatter imaging. J Am Coll Cardiol. 1992;19(2):313–20.

    Article  PubMed  CAS  Google Scholar 

  81. Gorcsan J 3rd, Romand JA, Mandarino WA, Deneault LG, Pinsky MR. Assessment of left ventricular performance by on-line pressure-area relations using echocardiographic automated border detection. J Am Coll Cardiol. 1994;23(1):242–52.

    Article  PubMed  Google Scholar 

  82. Gorcsan J 3rd, Denault A, Mandarino WA, Pinsky MR. Left ventricular pressure-volume relations with transesophageal echocardiographic automated border detection: comparison with conductance-catheter technique. Am Heart J. 1996;131(3):544–52.

    Article  PubMed  Google Scholar 

  83. Liu N, Darmon PL, Saada M, Catoire P, Rosso J, Berger G, et al. Comparison between radionuclide ejection fraction and fractional area changes derived from transesophageal echocardiography using automated border detection. Anesthesiology. 1996;85(3):468–74.

    Article  PubMed  CAS  Google Scholar 

  84. Chandra S, Bahl VK, Reddy SC, Bhargava B, Malhotra A, Wasir HS. Comparison of echocardiographic acoustic quantification system and radionuclide ventriculography for estimating left ventricular ejection fraction: validation in patients without regional wall motion abnormalities. Am Heart J. 1997;133(3):359–63.

    Article  PubMed  CAS  Google Scholar 

  85. Denault AY, Gorcsan J 3rd, Mandarino WA, Kancel MJ, Pinsky MR. Left ventricular performance assessed by echocardiographic automated border detection and arterial pressure. Am J Phys. 1997;272(1 Pt 2):H138–47.

    CAS  Google Scholar 

  86. Schmidlin D, Aschkenasy S, Vogt PR, Schmidli J, Jenni R, Schmid ER. Left ventricular pressure-area relations as assessed by transoesophageal echocardiographic automated border detection: comparison with conductance catheter technique in cardiac surgical patients. Br J Anaesth. 2000;85(3):379–88.

    Article  PubMed  CAS  Google Scholar 

  87. Fisher EA, DuBrow IW, Hastreiter AR. Comparison of ejection phase indices of left ventricular performance in infants and children. Circulation. 1975;52(5):916–25.

    Article  PubMed  CAS  Google Scholar 

  88. Igarashi H, Shiraishi H, Endoh H, Yanagisawa M. Left ventricular contractile state in preterm infants: relation between wall stress and velocity of circumferential fiber shortening. Am Heart J. 1994;127(5):1336–40.

    Article  PubMed  CAS  Google Scholar 

  89. Tynan M, Reid DS, Hunter S, Kaye HH, Osme S, Urquhart W, et al. Ejection phase indices of left ventricular performance in infants, children, and adults. Br Heart J. 1975;37(2):196–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Gutgesell HP, Paquet M, Duff DF, McNamara DG. Evaluation of left ventricular size and function by echocardiography. Results in normal children. Circulation. 1977;56(3):457–62.

    Article  PubMed  CAS  Google Scholar 

  91. Henry WL, Ware J, Gardin JM, Hepner SI, McKay J, Weiner M. Echocardiographic measurements in normal subjects. Growth-related changes that occur between infancy and early adulthood. Circulation. 1978;57(2):278–85.

    Article  PubMed  CAS  Google Scholar 

  92. Ruschhaupt DG, Sodt PC, Hutcheon NA, Arcilla RA. Estimation of circumferential fiber shortening velocity by echocardiography. J Am Coll Cardiol. 1983;2(1):77–84.

    Article  PubMed  CAS  Google Scholar 

  93. Greim CA, Roewer N, Schulte am Esch J. Assessment of changes in left ventricular wall stress from the end-systolic pressure-area product. Br J Anaesth. 1995;75(5):583–7.

    Article  PubMed  CAS  Google Scholar 

  94. Colan SD, Borow KM, Neumann A. Left ventricular end-systolic wall stress-velocity of fiber shortening relation: a load-independent index of myocardial contractility. J Am Coll Cardiol. 1984;4(4):715–24.

    Article  PubMed  CAS  Google Scholar 

  95. Royse CF, Connelly KA, MacLaren G, Royse AG. Evaluation of echocardiography indices of systolic function: a comparative study using pressure-volume loops in patients undergoing coronary artery bypass surgery. Anaesthesia. 2007;62(2):109–16.

    Article  PubMed  CAS  Google Scholar 

  96. Tei C. New non-invasive index for combined systolic and diastolic ventricular function. J Cardiol. 1995;26(2):135–6.

    PubMed  CAS  Google Scholar 

  97. Tei C, Ling LH, Hodge DO, Bailey KR, Oh JK, Rodeheffer RJ, et al. New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function—a study in normals and dilated cardiomyopathy. J Cardiol. 1995;26(6):357–66.

    PubMed  CAS  Google Scholar 

  98. Tei C, Dujardin KS, Hodge DO, Kyle RA, Tajik AJ, Seward JB. Doppler index combining systolic and diastolic myocardial performance: clinical value in cardiac amyloidosis. J Am Coll Cardiol. 1996;28(3):658–64.

    Article  PubMed  CAS  Google Scholar 

  99. Tei C, Nishimura RA, Seward JB, Tajik AJ. Noninvasive Doppler-derived myocardial performance index: correlation with simultaneous measurements of cardiac catheterization measurements. J Am Soc Echocardiogr. 1997;10(2):169–78.

    Article  PubMed  CAS  Google Scholar 

  100. Broberg CS, Pantely GA, Barber BJ, Mack GK, Lee K, Thigpen T, et al. Validation of the myocardial performance index by echocardiography in mice: a noninvasive measure of left ventricular function. J Am Soc Echocardiogr. 2003;16(8):814–23.

    Article  PubMed  Google Scholar 

  101. Eidem BW, Tei C, O'Leary PW, Cetta F, Seward JB. Nongeometric quantitative assessment of right and left ventricular function: myocardial performance index in normal children and patients with Ebstein anomaly. J Am Soc Echocardiogr. 1998;11(9):849–56.

    Article  PubMed  CAS  Google Scholar 

  102. Tei C, Dujardin KS, Hodge DO, Bailey KR, McGoon MD, Tajik AJ, et al. Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr. 1996;9(6):838–47.

    Article  PubMed  CAS  Google Scholar 

  103. Dujardin KS, Tei C, Yeo TC, Hodge DO, Rossi A, Seward JB. Prognostic value of a Doppler index combining systolic and diastolic performance in idiopathic-dilated cardiomyopathy. Am J Cardiol. 1998;82(9):1071–6.

    Article  PubMed  CAS  Google Scholar 

  104. Yeo TC, Dujardin KS, Tei C, Mahoney DW, McGoon MD, Seward JB. Value of a Doppler-derived index combining systolic and diastolic time intervals in predicting outcome in primary pulmonary hypertension. Am J Cardiol. 1998;81(9):1157–61.

    Article  PubMed  CAS  Google Scholar 

  105. Eidem BW, O’Leary PW, Tei C, Seward JB. Usefulness of the myocardial performance index for assessing right ventricular function in congenital heart disease. Am J Cardiol. 2000;86(6):654–8.

    Article  PubMed  CAS  Google Scholar 

  106. Williams RV, Ritter S, Tani LY, Pagoto LT, Minich LL. Quantitative assessment of ventricular function in children with single ventricles using the Doppler myocardial performance index. Am J Cardiol. 2000;86(10):1106–10.

    Article  PubMed  CAS  Google Scholar 

  107. Yasuoka K, Harada K, Toyono M, Tamura M, Yamamoto F. Tei index determined by tissue Doppler imaging in patients with pulmonary regurgitation after repair of tetralogy of Fallot. Pediatr Cardiol. 2004;25(2):131–6.

    Article  PubMed  CAS  Google Scholar 

  108. Shanewise JS, Cheung AT, Aronson S, Stewart WJ, Weiss RL, Mark JB, et al. ASE/SCA guidelines for performing a comprehensive intraoperative multiplane transesophageal echocardiography examination: recommendations of the American Society of Echocardiography Council for Intraoperative Echocardiography and the Society of Cardiovascular Anesthesiologists Task Force for Certification in Perioperative Transesophageal Echocardiography. J Am Soc Echocardiogr. 1999;12(10):884–900.

    Article  PubMed  CAS  Google Scholar 

  109. Hahn RT, Abraham T, Adams MS, Bruce CJ, Glas KE, Lang RM, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26(9):921–64.

    Article  PubMed  Google Scholar 

  110. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging. 2002;18(1):539–42.

    PubMed  Google Scholar 

  111. Vegas A. Perioperative two-dimensional transesophageal echocardiography: a practical handbook. New York: Springer; 2012.

    Book  Google Scholar 

  112. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.

    Article  PubMed  Google Scholar 

  113. Rouine-Rapp K, Rouillard KP, Miller-Hance W, Silverman NH, Collins KK, Cahalan MK, et al. Segmental wall-motion abnormalities after an arterial switch operation indicate ischemia. Anesth Analg. 2006;103(5):1139–46.

    Article  PubMed  Google Scholar 

  114. McMahon CJ, Nagueh SF, Pignatelli RH, Denfield SW, Dreyer WJ, Price JF, et al. Characterization of left ventricular diastolic function by tissue Doppler imaging and clinical status in children with hypertrophic cardiomyopathy. Circulation. 2004;109(14):1756–62.

    Article  PubMed  Google Scholar 

  115. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30(6):1527–33.

    Article  PubMed  CAS  Google Scholar 

  116. Nagueh SF, Mikati I, Kopelen HA, Middleton KJ, Quinones MA, Zoghbi WA. Doppler estimation of left ventricular filling pressure in sinus tachycardia. A new application of tissue doppler imaging. Circulation. 1998;98(16):1644–50.

    Article  PubMed  CAS  Google Scholar 

  117. Sasaki N, Garcia M, Lytrivi I, Ko H, Nielsen J, Parness I, et al. Utility of Doppler tissue imaging-derived indices in identifying subclinical systolic ventricular dysfunction in children with restrictive cardiomyopathy. Pediatr Cardiol. 2011;32(5):646–51.

    Article  PubMed  Google Scholar 

  118. Goldberg DJ, Quartermain MD, Glatz AC, Hall EK, Davis E, Kren SA, et al. Doppler tissue imaging in children following cardiac transplantation: a comparison to catheter derived hemodynamics. Pediatr Transplant. 2011;15(5):488–94.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Imai H, Kurokawa S, Taneoka M, Baba H. Tissue Doppler imaging is useful for predicting the need for inotropic support after cardiac surgery. J Anesth. 2011;25(6):805–11.

    Article  PubMed  Google Scholar 

  120. Kumar K, Nepomuceno RG, Chelvanathan A, Golian M, Bohonis S, Cleverley K, et al. The role of tissue Doppler imaging in predicting left ventricular filling pressures in patients undergoing cardiac surgery: an intraoperative study. Echocardiography. 2013;30(3):271–8.

    Article  PubMed  Google Scholar 

  121. Gorcsan J 3rd, Tanaka H. Echocardiographic assessment of myocardial strain. J Am Coll Cardiol. 2011;58(14):1401–13.

    Article  PubMed  Google Scholar 

  122. Voigt JU, Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease. JACC Cardiovasc Imaging. 2019;12(9):1849–63.

    Article  PubMed  Google Scholar 

  123. Collier P, Phelan D, Klein A. A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol. 2017;69(8):1043–56.

    Article  PubMed  Google Scholar 

  124. Abuelkasem E, Wang DW, Omer MA, Abdelmoneim SS, Howard-Quijano K, Rakesh H, et al. Perioperative clinical utility of myocardial deformation imaging: a narrative review. Br J Anaesth. 2019;123(4):408–20.

    Article  PubMed  Google Scholar 

  125. Benson MJ, Silverton N, Morrissey C, Zimmerman J. Strain imaging: An everyday tool for the perioperative echocardiographer. J Cardiothorac Vasc Anesth. 2019; https://doi.org/10.1053/j.jvca.2019.11.035.

  126. Friedberg MK, Mertens L. Deformation imaging in selected congenital heart disease: is it evolving to clinical use? J Am Soc Echocardiogr. 2012;25(9):919–31.

    Article  PubMed  Google Scholar 

  127. Derumeaux G, Ovize M, Loufoua J, Pontier G, Andre-Fouet X, Cribier A. Assessment of nonuniformity of transmural myocardial velocities by color-coded tissue Doppler imaging: characterization of normal, ischemic, and stunned myocardium. Circulation. 2000;101(12):1390–5.

    Article  PubMed  CAS  Google Scholar 

  128. Weidemann F, Eyskens B, Jamal F, Mertens L, Kowalski M, D'Hooge J, et al. Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging. J Am Soc Echocardiogr. 2002;15(1):20–8.

    Article  PubMed  Google Scholar 

  129. Weidemann F, Eyskens B, Mertens L, Dommke C, Kowalski M, Simmons L, et al. Quantification of regional right and left ventricular function by ultrasonic strain rate and strain indexes after surgical repair of tetralogy of Fallot. Am J Cardiol. 2002;90(2):133–8.

    Article  PubMed  Google Scholar 

  130. Harada K, Toyono M, Yamamoto F. Assessment of right ventricular function during exercise with quantitative Doppler tissue imaging in children late after repair of tetralogy of Fallot. J Am Soc Echocardiogr. 2004;17(8):863–9.

    Article  PubMed  Google Scholar 

  131. Toyono M, Harada K, Tamura M, Yamamoto F, Takada G. Myocardial acceleration during isovolumic contraction as a new index of right ventricular contractile function and its relation to pulmonary regurgitation in patients after repair of tetralogy of Fallot. J Am Soc Echocardiogr. 2004;17(4):332–7.

    Article  PubMed  Google Scholar 

  132. Scherptong RWC, Mollema SA, Blom NA, Kroft LJM, de Roos A, Vliegen HW, et al. Right ventricular peak systolic longitudinal strain is a sensitive marker for right ventricular deterioration in adult patients with tetralogy of Fallot. Int J Cardiovasc Imaging. 2009;25(7):669–76.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Friedberg MK, Mertens L. Tissue velocities, strain, and strain rate for echocardiographic assessment of ventricular function in congenital heart disease. Eur J Echocardiogr. 2009;10(5):585–93.

    Article  PubMed  Google Scholar 

  134. Forsey J, Friedberg MK, Mertens L. Speckle tracking echocardiography in pediatric and congenital heart disease. Echocardiography. 2013;30(4):447–59.

    Article  PubMed  Google Scholar 

  135. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22(2):107–33.

    Article  PubMed  Google Scholar 

  136. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277–314.

    Article  PubMed  Google Scholar 

  137. O’Leary PW, Durongpisitkul K, Cordes TM, Bailey KR, Hagler DJ, Tajik J, et al. Diastolic ventricular function in children: a Doppler echocardiographic study establishing normal values and predictors of increased ventricular end-diastolic pressure. Mayo Clin Proc. 1998;73(7):616–28.

    Article  PubMed  Google Scholar 

  138. Dallaire F, Slorach C, Hui W, Sarkola T, Friedberg MK, Bradley TJ, et al. Reference values for pulse wave Doppler and tissue Doppler imaging in pediatric echocardiography. Circ Cardiovasc Imaging. 2015;8(2):e002167.

    Article  PubMed  Google Scholar 

  139. Nicoara A, Whitener G, Swaminathan M. Perioperative diastolic dysfunction: a comprehensive approach to assessment by transesophageal echocardiography. Semin Cardiothorac Vasc Anesth. 2014;18(2):218–36.

    Article  PubMed  Google Scholar 

  140. Appleton CP, Hatle LK, Popp RL. Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol. 1988;12(2):426–40.

    Article  PubMed  CAS  Google Scholar 

  141. Nishimura RA, Abel MD, Hatle LK, Tajik AJ. Assessment of diastolic function of the heart: background and current applications of Doppler echocardiography. Part II. Clinical studies. Mayo Clin Proc. 1989;64(2):181–204.

    Article  PubMed  CAS  Google Scholar 

  142. Bessen M, Gardin JM. Evaluation of left ventricular diastolic function. Cardiol Clin. 1990;8(2):315–32.

    Article  PubMed  CAS  Google Scholar 

  143. Myreng Y, Smiseth OA. Assessment of left ventricular relaxation by Doppler echocardiography. Comparison of isovolumic relaxation time and transmitral flow velocities with time constant of isovolumic relaxation. Circulation. 1990;81(1):260–6.

    Article  PubMed  CAS  Google Scholar 

  144. Klein AL, Tajik AJ. Doppler assessment of pulmonary venous flow in healthy subjects and in patients with heart disease. J Am Soc Echocardiogr. 1991;4(4):379–92.

    Article  PubMed  CAS  Google Scholar 

  145. Appleton CP, Galloway JM, Gonzalez MS, Gaballa M, Basnight MA. Estimation of left ventricular filling pressures using two-dimensional and Doppler echocardiography in adult patients with cardiac disease. Additional value of analyzing left atrial size, left atrial ejection fraction and the difference in duration of pulmonary venous and mitral flow velocity at atrial contraction. J Am Coll Cardiol. 1993;22(7):1972–82.

    Article  PubMed  CAS  Google Scholar 

  146. Cohen GI, Pietrolungo JF, Thomas JD, Klein AL. A practical guide to assessment of ventricular diastolic function using Doppler echocardiography. J Am Coll Cardiol. 1996;27(7):1753–60.

    Article  PubMed  CAS  Google Scholar 

  147. Hoit BD, Shao Y, Gabel M, Walsh RA. Influence of loading conditions and contractile state on pulmonary venous flow. Validation of Doppler velocimetry. Circulation. 1992;86(2):651–9.

    Article  PubMed  CAS  Google Scholar 

  148. Sohn DW, Chai IH, Lee DJ, Kim HC, Kim HS, Oh BH, et al. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol. 1997;30(2):474–80.

    Article  PubMed  CAS  Google Scholar 

  149. Aranda JM Jr, Weston MW, Puleo JA, Fontanet HL. Effect of loading conditions on myocardial relaxation velocities determined by Doppler tissue imaging in heart transplant recipients. J Heart Lung Transplant. 1998;17(7):693–7.

    PubMed  Google Scholar 

  150. Oki T, Fukuda K, Tabata T, Mishiro Y, Yamada H, Abe M, et al. Effect of an acute increase in afterload on left ventricular regional wall motion velocity in healthy subjects. J Am Soc Echocardiogr. 1999;12(6):476–83.

    Article  PubMed  CAS  Google Scholar 

  151. Muller S, Bartel T, Koopman J, Pandian NG, Erbel R, Pachinger O. Tissue Doppler analysis is hindered in abnormal wall motion and changes in afterload. Int J Cardiol. 2003;90(1):81–90.

    Article  PubMed  Google Scholar 

  152. Jacques DC, Pinsky MR, Severyn D, Gorcsan J 3rd. Influence of alterations in loading on mitral annular velocity by tissue Doppler echocardiography and its associated ability to predict filling pressures. Chest. 2004;126(6):1910–8.

    Article  PubMed  Google Scholar 

  153. Farias CA, Rodriguez L, Garcia MJ, Sun JP, Klein AL, Thomas JD. Assessment of diastolic function by tissue Doppler echocardiography: comparison with standard transmitral and pulmonary venous flow. J Am Soc Echocardiogr. 1999;12(8):609–17.

    Article  PubMed  CAS  Google Scholar 

  154. Garcia MJ, Thomas JD. Tissue Doppler to assess diastolic left ventricular function. Echocardiography. 1999;16(5):501–8.

    Article  PubMed  Google Scholar 

  155. Rivas-Gotz C, Khoury DS, Manolios M, Rao L, Kopelen HA, Nagueh SF. Time interval between onset of mitral inflow and onset of early diastolic velocity by tissue Doppler: a novel index of left ventricular relaxation: experimental studies and clinical application. J Am Coll Cardiol. 2003;42(8):1463–70.

    Article  PubMed  Google Scholar 

  156. Ruan Q, Rao L, Middleton KJ, Khoury DS, Nagueh SF. Assessment of left ventricular diastolic function by early diastolic mitral annulus peak acceleration rate: experimental studies and clinical application. J Appl Physiol. 1985;100(2):679–84.

    Article  Google Scholar 

  157. Garcia MJ, Rodriguez L, Ares M, Griffin BP, Thomas JD, Klein AL. Differentiation of constrictive pericarditis from restrictive cardiomyopathy: assessment of left ventricular diastolic velocities in longitudinal axis by Doppler tissue imaging. J Am Coll Cardiol. 1996;27(1):108–14.

    Article  PubMed  CAS  Google Scholar 

  158. Oki T, Tabata T, Yamada H, Abe M, Onose Y, Wakatsuki T, et al. Right and left ventricular wall motion velocities as diagnostic indicators of constrictive pericarditis. Am J Cardiol. 1998;81(4):465–70.

    Article  PubMed  CAS  Google Scholar 

  159. Ha JW, Oh JK, Ommen SR, Ling LH, Tajik AJ. Diagnostic value of mitral annular velocity for constrictive pericarditis in the absence of respiratory variation in mitral inflow velocity. J Am Soc Echocardiogr. 2002;15(12):1468–71.

    Article  PubMed  Google Scholar 

  160. Ha JW, Ommen SR, Tajik AJ, Barnes ME, Ammash NM, Gertz MA, et al. Differentiation of constrictive pericarditis from restrictive cardiomyopathy using mitral annular velocity by tissue Doppler echocardiography. Am J Cardiol. 2004;94(3):316–9.

    Article  PubMed  Google Scholar 

  161. Garcia MJ. Constrictive pericarditis versus restrictive cardiomyopathy? J Am Coll Cardiol. 2016;67(17):2061–76.

    Article  PubMed  Google Scholar 

  162. Rychik J, Tian ZY. Quantitative assessment of myocardial tissue velocities in normal children with Doppler tissue imaging. Am J Cardiol. 1996;77(14):1254–7.

    Article  PubMed  CAS  Google Scholar 

  163. Harada K, Orino T, Yasuoka K, Tamura M, Takada G. Tissue Doppler imaging of left and right ventricles in normal children. Tohoku J Exp Med. 2000;191:21–9.

    Article  Google Scholar 

  164. Kapusta L, Thijssen JM, Cuypers MH, Peer PG, Daniels O. Assessment of myocardial velocities in healthy children using tissue Doppler imaging. Ultrasound Med Biol. 2000;26(2):229–37.

    Article  PubMed  CAS  Google Scholar 

  165. Mori K, Hayabuchi Y, Kuroda Y, Nii M, Manabe T. Left ventricular wall motion velocities in healthy children measured by pulsed wave Doppler tissue echocardiography: normal values and relation to age and heart rate. J Am Soc Echocardiogr. 2000;13(11):1002–11.

    Article  PubMed  CAS  Google Scholar 

  166. Frommelt PC, Ballweg JA, Whitstone BN, Frommelt MA. Usefulness of Doppler tissue imaging analysis of tricuspid annular motion for determination of right ventricular function in normal infants and children. Am J Cardiol. 2002;89(5):610–3.

    Article  PubMed  Google Scholar 

  167. Swaminathan S, Ferrer PL, Wolff GS, Gomez-Marin O, Rusconi PG. Usefulness of tissue Doppler echocardiography for evaluating ventricular function in children without heart disease. Am J Cardiol. 2003;91(5):570–4.

    Article  PubMed  Google Scholar 

  168. Eidem BW, McMahon CJ, Cohen RR, Wu J, Finkelshteyn I, Kovalchin JP, et al. Impact of cardiac growth on Doppler tissue imaging velocities: a study in healthy children. J Am Soc Echocardiogr. 2004;17(3):212–21.

    Article  PubMed  Google Scholar 

  169. Savage A, Hlavacek A, Ringewald J, Shirali G. Evaluation of the myocardial performance index and tissue Doppler imaging by comparison to near-simultaneous catheter measurements in pediatric cardiac transplant patients. J Heart Lung Transplant. 2010;29(8):853–8.

    Article  PubMed  Google Scholar 

  170. Nagueh SF, Kopelen HA, Quinones MA. Assessment of left ventricular filling pressures by Doppler in the presence of atrial fibrillation. Circulation. 1996;94(9):2138–45.

    Article  PubMed  CAS  Google Scholar 

  171. Sundereswaran L, Nagueh SF, Vardan S, Middleton KJ, Zoghbi WA, Quinones MA, et al. Estimation of left and right ventricular filling pressures after heart transplantation by tissue Doppler imaging. Am J Cardiol. 1998;82(3):352–7.

    Article  PubMed  CAS  Google Scholar 

  172. Nagueh SF, Lakkis NM, Middleton KJ, Spencer WH 3rd, Zoghbi WA, Quinones MA. Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation. 1999;99(2):254–61.

    Article  PubMed  CAS  Google Scholar 

  173. Border WL, Michelfelder EC, Glascock BJ, Witt SA, Spicer RL, Beekman RH 3rd, et al. Color M-mode and Doppler tissue evaluation of diastolic function in children: simultaneous correlation with invasive indices. J Am Soc Echocardiogr. 2003;16(9):988–94.

    Article  PubMed  Google Scholar 

  174. To AC, Flamm SD, Marwick TH, Klein AL. Clinical utility of multimodality LA imaging: assessment of size, function, and structure. JACC Cardiovasc Imaging. 2011;4(7):788–98.

    Article  PubMed  Google Scholar 

  175. Sabatino J, Di Salvo G, Prota C, Bucciarelli V, Josen M, Paredes J, et al. Left atrial strain to identify diastolic dysfunction in children with cardiomyopathies. J Clin Med. 2019;8(8):1243.

    Article  PubMed Central  CAS  Google Scholar 

  176. Thomas L, Marwick TH, Popescu BA, Donal E, Badano LP. Left atrial structure and function, and left ventricular diastolic dysfunction: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(15):1961–77.

    Article  PubMed  Google Scholar 

  177. Di Salvo G, Pacileo G, Del Giudice EM, Natale F, Limongelli G, Verrengia M, et al. Atrial myocardial deformation properties in obese nonhypertensive children. J Am Soc Echocardiogr. 2008;21(2):151–6.

    Article  PubMed  Google Scholar 

  178. Ghelani SJ, Brown DW, Kuebler JD, Perrin D, Shakti D, Williams DN, et al. Left atrial volumes and strain in healthy children measured by three-dimensional echocardiography: normal values and maturational changes. J Am Soc Echocardiogr. 2018;31(2):187–93.

    Article  PubMed  Google Scholar 

  179. Kang SJ, Kwon YW, Hwang SJ, Kim HJ, Jin BK, Yon DK. Clinical utility of left atrial strain in children in the acute phase of Kawasaki disease. J Am Soc Echocardiogr. 2018;31(3):323–32.

    Article  PubMed  Google Scholar 

  180. Shakti D, Friedman KG, Harrild DM, Gauvreau K, Geva T, Colan SD, et al. Left atrial size and function in patients with congenital aortic valve stenosis. Am J Cardiol. 2018; https://doi.org/10.1016/j.amjcard.2018.07.027.

  181. Linden K, Goldschmidt F, Laser KT, Winkler C, Körperich H, Dalla-Pozza R, et al. Left atrial volumes and phasic function in healthy children: reference values using real-time three-dimensional echocardiography. J Am Soc Echocardiogr. 2019; https://doi.org/10.1016/j.echo.2019.03.018.

  182. Kwak J, Polito A, Majewski M, Adams W, Burcar K, Oftadeh M, et al. Comparison of left atrial measurements using 2- and 3-dimensional transesophageal echocardiography. J Cardiothorac Vasc Anesth. 2019;33(6):1518–26.

    Article  PubMed  Google Scholar 

  183. Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation. 1984;70(4):657–62.

    Article  PubMed  CAS  Google Scholar 

  184. Zoghbi WA, Habib GB, Quinones MA. Doppler assessment of right ventricular filling in a normal population. Comparison with left ventricular filling dynamics. Circulation. 1990;82(4):1316–24.

    Article  PubMed  CAS  Google Scholar 

  185. Moller JE, Poulsen SH, Egstrup K. Effect of preload alternations on a new Doppler echocardiographic index of combined systolic and diastolic performance. J Am Soc Echocardiogr. 1999;12(12):1065–72.

    Article  PubMed  CAS  Google Scholar 

  186. Poelaert J, Ruggero A. Myocardial performance index and tissue Doppler systolic wave velocity are preload dependent. Anesthesiology. 2005;103(1):210.

    Article  PubMed  Google Scholar 

  187. Anconina J, Danchin N, Selton-Suty C, Isaaz K, Juilliere Y, Buffet P, et al. Noninvasive estimation of right ventricular dP/dt in patients with tricuspid valve regurgitation. Am J Cardiol. 1993;71(16):1495–7.

    Article  PubMed  CAS  Google Scholar 

  188. Pai RG, Bansal RC, Shah PM. Determinants of the rate of right ventricular pressure rise by Doppler echocardiography: potential value in the assessment of right ventricular function. J Heart Valve Dis. 1994;3(2):179–84.

    PubMed  CAS  Google Scholar 

  189. Michelfelder EC, Vermilion RP, Ludomirsky A, Beekman RH, Lloyd TR. Comparison of simultaneous Doppler- and catheter-derived right ventricular dP/dt in hypoplastic left heart syndrome. Am J Cardiol. 1996;77(2):212–4.

    Article  PubMed  CAS  Google Scholar 

  190. Kanzaki H, Nakatani S, Kawada T, Yamagishi M, Sunagawa K, Miyatake K. Right ventricular dp/dt/pmax, not dp/dtmax, noninvasively derived from tricuspid regurgitation velocity is a useful index of right ventricular contractility. J Am Soc Echocardiogr. 2002;15(2):136–42.

    Article  PubMed  Google Scholar 

  191. Noori NM, Mehralizadeh S, Khaje A. Assessment of right ventricular function in children with congenital heart disease. Doppler tissue imaging. Saudi Med J. 2008;29(8):1168–72.

    PubMed  Google Scholar 

  192. Helbing WA, Bosch HG, Maliepaard C, Zwinderman KH, Rebergen SA, Ottenkamp J, et al. On-line automated border detection for echocardiographic quantification of right ventricular size and function in children. Pediatr Cardiol. 1997;18(4):261–9.

    Article  PubMed  CAS  Google Scholar 

  193. Geva T, Powell AJ, Crawford EC, Chung T, Colan SD. Evaluation of regional differences in right ventricular systolic function by acoustic quantification echocardiography and cine magnetic resonance imaging. Circulation. 1998;98(4):339–45.

    Article  PubMed  CAS  Google Scholar 

  194. Jiang L, Siu SC, Handschumacher MD, Luis Guererro J, Vazquez de Prada JA, King ME, et al. Three-dimensional echocardiography. In vivo validation for right ventricular volume and function. Circulation. 1994;89(5):2342–50.

    Article  PubMed  CAS  Google Scholar 

  195. Fujimoto S, Mizuno R, Nakagawa Y, Dohi K, Nakano H. Estimation of the right ventricular volume and ejection fraction by transthoracic three-dimensional echocardiography. A validation study using magnetic resonance imaging. Int J Card Imaging. 1998;14(6):385–90.

    Article  PubMed  CAS  Google Scholar 

  196. Ota T, Fleishman CE, Strub M, Stetten G, Ohazama CJ, von Ramm OT, et al. Real-time, three-dimensional echocardiography: feasibility of dynamic right ventricular volume measurement with saline contrast. Am Heart J. 1999;137(5):958–66.

    Article  PubMed  CAS  Google Scholar 

  197. Nesser HJ, Tkalec W, Patel AR, Masani ND, Niel J, Markt B, et al. Quantitation of right ventricular volumes and ejection fraction by three-dimensional echocardiography in patients: comparison with magnetic resonance imaging and radionuclide ventriculography. Echocardiography. 2006;23(8):666–80.

    Article  PubMed  Google Scholar 

  198. Grison A, Maschietto N, Reffo E, Stellin G, Padalino M, Vida V, et al. Three-dimensional echocardiographic evaluation of right ventricular volume and function in pediatric patients: validation of the technique. J Am Soc Echocardiogr. 2007;20(8):921–9.

    Article  PubMed  Google Scholar 

  199. Khoo NS, Young A, Occleshaw C, Cowan B, Zeng IS, Gentles TL. Assessments of right ventricular volume and function using three-dimensional echocardiography in older children and adults with congenital heart disease: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2009;22(11):1279–88.

    Article  PubMed  Google Scholar 

  200. Grewal J, Majdalany D, Syed I, Pellikka P, Warnes CA. Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr. 2010;23(2):127–33.

    Article  PubMed  Google Scholar 

  201. Fusini L, Tamborini G, Gripari P, Maffessanti F, Mazzanti V, Muratori M, et al. Feasibility of intraoperative three-dimensional transesophageal echocardiography in the evaluation of right ventricular volumes and function in patients undergoing cardiac surgery. J Am Soc Echocardiogr. 2011;24(8):868–77.

    Article  PubMed  Google Scholar 

  202. van der Zwaan HB, Geleijnse ML, McGhie JS, Boersma E, Helbing WA, Meijboom FJ, et al. Right ventricular quantification in clinical practice: two-dimensional vs. three-dimensional echocardiography compared with cardiac magnetic resonance imaging. Eur J Echocardiogr. 2011;12(9):656–64.

    Article  PubMed  Google Scholar 

  203. Renella P, Marx GR, Zhou J, Gauvreau K, Geva T. Feasibility and reproducibility of three-dimensional echocardiographic assessment of right ventricular size and function in pediatric patients. J Am Soc Echocardiogr. 2014;27(8):903–10.

    Article  PubMed  Google Scholar 

  204. Nillesen MM, van Dijk AP, Duijnhouwer AL, Thijssen JM, de Korte CL. Automated assessment of right ventricular volumes and function using three-dimensional transesophageal echocardiography. Ultrasound Med Biol. 2016;42(2):596–606.

    Article  PubMed  Google Scholar 

  205. Laser KT, Karabiyik A, Korperich H, Horst JP, Barth P, Kececioglu D, et al. Validation and reference values for three-dimensional echocardiographic right ventricular volumetry in children: a multicenter study. J Am Soc Echocardiogr. 2018;31(9):1050–63.

    Article  PubMed  Google Scholar 

  206. Heusch A, Rubo J, Krogmann ON, Bourgeois M. Volumetric analysis of the right ventricle in children with congenital heart defects: comparison of biplane angiography and transthoracic 3-dimensional echocardiography. Cardiol Young. 1999;9(6):577–84.

    Article  PubMed  CAS  Google Scholar 

  207. van den Bosch AE, Robbers-Visser D, Krenning BJ, Voormolen MM, McGhie JS, Helbing WA, et al. Real-time transthoracic three-dimensional echocardiographic assessment of left ventricular volume and ejection fraction in congenital heart disease. J Am Soc Echocardiogr. 2006;19(1):1–6.

    Article  PubMed  Google Scholar 

  208. van der Zwaan HB, Helbing WA, Boersma E, Geleijnse ML, McGhie JS, Soliman OII, et al. Usefulness of real-time three-dimensional echocardiography to identify right ventricular dysfunction in patients with congenital heart disease. Am J Cardiol. 2010;106(6):843–50.

    Article  PubMed  Google Scholar 

  209. Okumura K, Slorach C, Mroczek D, Dragulescu A, Mertens L, Redington AN, et al. Right ventricular diastolic performance in children with pulmonary arterial hypertension associated with congenital heart disease: correlation of echocardiographic parameters with invasive reference standards by high-fidelity micromanometer catheter. Circ Cardiovasc Imaging. 2014;7(3):491–501.

    Article  PubMed  Google Scholar 

  210. Selly JB, Iriart X, Roubertie F, Mauriat P, Marek J, Guilhon E, et al. Multivariable assessment of the right ventricle by echocardiography in patients with repaired tetralogy of Fallot undergoing pulmonary valve replacement: a comparative study with magnetic resonance imaging. Arch Cardiovasc Dis. 2015;108(1):5–15.

    Article  PubMed  Google Scholar 

  211. Jone PN, Patel SS, Cassidy C, Ivy DD. Three-dimensional echocardiography of right ventricular function correlates with severity of pediatric pulmonary hypertension. Congenit Heart Dis. 2016;11(6):562–9.

    Article  PubMed  Google Scholar 

  212. De Simone R, Wolf I, Mottl-Link S, Bottiger BW, Rauch H, Meinzer HP, et al. Intraoperative assessment of right ventricular volume and function. Eur J Cardiothorac Surg. 2005;27(6):988–93.

    Article  PubMed  Google Scholar 

  213. Karhausen J, Dudaryk R, Phillips-Bute B, Rivera JD, de Lange F, Milano CA, et al. Three-dimensional transesophageal echocardiography for perioperative right ventricular assessment. Ann Thorac Surg. 2012;94(2):468–74.

    Article  PubMed  Google Scholar 

  214. Bartels K, Karhausen J, Sullivan BL, Mackensen GB. Update on perioperative right heart assessment using transesophageal echocardiography. Semin Cardiothorac Vasc Anesth. 2014;18(4):341–51.

    Article  PubMed  Google Scholar 

  215. Cronin B, O’Brien EO, Gu W, Banks D, Maus T. Intraoperative 3-dimensional echocardiography-derived right ventricular volumetric analysis in chronic thromboembolic pulmonary hypertension patients before and after pulmonary thromboendarterectomy. J Cardiothorac Vasc Anesth. 2019;33(6):1498–503.

    Article  PubMed  Google Scholar 

  216. Tamborini G, Brusoni D, Torres Molina JE, Galli CA, Maltagliati A, Muratori M, et al. Feasibility of a new generation three-dimensional echocardiography for right ventricular volumetric and functional measurements. Am J Cardiol. 2008;102(4):499–505.

    Article  PubMed  Google Scholar 

  217. Tamborini G, Muratori M, Brusoni D, Celeste F, Maffessanti F, Caiani EG, et al. Is right ventricular systolic function reduced after cardiac surgery? A two- and three-dimensional echocardiographic study. Eur J Echocardiogr. 2009;10(5):630–4.

    Article  PubMed  Google Scholar 

  218. Vegas A, Meineri M. Core review: three-dimensional transesophageal echocardiography is a major advance for intraoperative clinical management of patients undergoing cardiac surgery: a core review. Anesth Analg. 2010;110(6):1548–73.

    Article  PubMed  Google Scholar 

  219. Cheung YF, Penny DJ, Redington AN. Serial assessment of left ventricular diastolic function after Fontan procedure. Heart. 2000;83(4):420–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Mahle WT, Coon PD, Wernovsky G, Rychik J. Quantitative echocardiographic assessment of the performance of the functionally single right ventricle after the Fontan operation. Cardiol Young. 2001;11(4):399–406.

    Article  PubMed  CAS  Google Scholar 

  221. Earing MG, Cetta F, Driscoll DJ, Mair DD, Hodge DO, Dearani JA, et al. Long-term results of the Fontan operation for double-inlet left ventricle. Am J Cardiol. 2005;96(2):291–8.

    Article  PubMed  Google Scholar 

  222. Frommelt PC, Snider AR, Meliones JN, Vermilion RP. Doppler assessment of pulmonary artery flow patterns and ventricular function after the Fontan operation. Am J Cardiol. 1991;68(11):1211–5.

    Article  PubMed  CAS  Google Scholar 

  223. Penny DJ, Rigby ML, Redington AN. Abnormal patterns of intraventricular flow and diastolic filling after the Fontan operation: evidence for incoordinate ventricular wall motion. Br Heart J. 1991;66(5):375–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Olivier M, O'Leary PW, Pankratz VS, Lohse CM, Walsh BE, Tajik AJ, et al. Serial Doppler assessment of diastolic function before and after the Fontan operation. J Am Soc Echocardiogr. 2003;16(11):1136–43.

    Article  PubMed  Google Scholar 

  225. Bassareo PP, Tumbarello R, Piras A, Mercuro G. Evaluation of regional myocardial function by Doppler tissue imaging in univentricular heart after successful Fontan repair. Echocardiography. 2010;27(6):702–8.

    Article  PubMed  Google Scholar 

  226. Ikemba CM, Su JT, Stayer SA, Miller-Hance WC, Eidem BW, Bezold LI, et al. Myocardial performance index with sevoflurane-pancuronium versus fentanyl-midazolam-pancuronium in infants with a functional single ventricle. Anesthesiology. 2004;101(6):1298–305.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin W. Eidem .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Case #1. 11 year old referred for surgical closure of moderate sized secundum atrial septal defect. Preoperative midesophageal four-chamber view demonstrates mild right ventricular dilation with qualitatively normal systolic function. Normal left ventricular size and systolic function are also present. In this view the interatrial communication is not displayed (MP4 776 kb)

Case #1. (Same patient as Video 5.1) Transgastric image (inverted) demonstrating a short axis view of the left and right ventricles. Note the mild right ventricular dilatation with normal qualitative systolic function. Normal left ventricular size and systolic function are demonstrated as well (MP4 910 kb)

Case #1. (Same patient as Video 5.1) Postoperative midesophageal four-chamber view demonstrates a smaller right ventricular size after atrial septal defect closure as compared to the preoperative examination (Video 5.1) with qualitatively normal systolic function. A rhythm disturbance is noted (MP4 1068 kb)

Case #1. (Same patient as Video 5.1) Transgastric mid papillary short axis view (inverted) demonstrating the left and right ventricles. Note the normalized right ventricular size and normal biventricular systolic function (MP4 666 kb)

Case #1. (Same patient as Video 5.1) Postoperative imaging from a transgastric mid papillary short axis view (inverted) demonstrating short axis images of the left ventricle that can allow for quantitative M-mode assessment (Fig. 5.19b). (MP4 679 kb)

Case #2. 22 year old patient with long QT syndrome referred for surgical excision of intracardiac right ventricular lead. Postoperative midesophageal four-chamber view demonstrates normal right and left ventricular size and systolic function (MP4 546 kb)

Case #2. Same patient as Video 5.6. Video from an inverted transgastric mid papillary short axis view demonstrating the left and right ventricles. Note the normal right ventricular size and normal biventricular systolic function (MP4 447 kb)

Case #3. 20 year old with history of tetralogy of Fallot and longstanding severe pulmonary regurgitation. Preoperative midesophageal four-chamber demonstrates moderate right ventricular dilatation with qualitatively low normal right ventricular systolic function (MP4 1142 kb)

Case #3. Same patient as Video 5.8. Deep transgastric right ventricular outflow tract view demonstrating the ventricles. Note the moderate right ventricular dilation with qualitatively low normal systolic function. Normal left ventricular size and systolic function are noted (MP4 1120 kb)

Case #3. Same patient as Video 5.8. Deep transgastric right ventricular outflow tract (RVOT) view specifically demonstrating the RVOT. Note the severe pulmonary regurgitation (red flow) into the dilated right ventricle as detected by color flow Doppler. No RVOT obstruction is present (laminar blue flow) (MP4 1171 kb)

Case #3. Same patient as Video 5.8. Multiplane preoperative imaging (transducer angle 42°) from the transgastric position (inverted) demonstrating a short axis view of the ventricles. Note the orientation of the left ventricle suitable for M-mode (Fig. 5.21) (MP4 1177 kb)

Case #3. Same patient as Video 5.8. Postoperative midesophageal four-chamber view following pulmonary valve replacement demonstrates a lesser degree of right ventricular dilatation as compared to the preoperative examination (Video 5.8) with qualitatively mildly decreased systolic function (MP4 970 kb)

Same patient as Video 5.8. Postoperative deep transgastric right ventricular outflow tract view confirms a lesser degree of right ventricular dilatation as compared to the preoperative examination (Video 5.10) and, from a qualitative standpoint, mildly to moderately decreased systolic function (MP4 817 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eidem, B.W. (2021). Functional Evaluation of the Heart. In: Wong, P.C., Miller-Hance, W.C. (eds) Transesophageal Echocardiography for Pediatric and Congenital Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-57193-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57193-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57192-4

  • Online ISBN: 978-3-030-57193-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics