Skip to main content

Abstract

Early experience with epicardial imaging during surgical interventions for congenital heart disease (CHD) provided strong evidence that intraoperative echocardiography could guide surgical and anesthetic management in these patients. Since transesophageal echocardiography (TEE) began to be used intraoperatively in the late 1980s, numerous publications have documented its utility in the care of patients with CHD. Subsequent technologic advances—multiplane TEE imaging, the evolution of three-dimensional echocardiography, and the miniaturization of probes—have made it possible to comprehensively assess structural abnormalities, evaluate hemodynamics, and, importantly, appraise surgical results in most CHD patients. Identifying hemodynamically significant residual disease during congenital heart surgery and guiding surgical revision represent major contributions of TEE to perioperative care. Additionally, TEE adds value by providing real-time perioperative assessment of hemodynamics, volume status, and myocardial function. This monitoring helps direct anesthetic care intraoperatively and pharmacologic therapy in the immediate postoperative period. Finally, TEE can guide management planning and help characterize unexpected or unusual postoperative findings or problems.

This chapter provides an overview of the applications of TEE in the intraoperative care of pediatric patients with congenital and acquired heart disease and of adults with CHD, particularly regarding surgical, medical, and anesthetic management. Data on the cost-effectiveness, pitfalls, and limitations of intraoperative TEE are reviewed. Lastly, the role of TEE in the postoperative care of these patients is briefly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CHD:

Congenital heart disease

CPB:

Cardiopulmonary bypass

CVC:

Central venous catheter

EF:

Ejection fraction

FAC:

Fractional area change

ICE:

Intracardiac echocardiography

ICU:

Intensive care unit

LAX:

Long-axis

LV:

Left ventricle

ME:

Midesophageal

MR:

Mitral regurgitation

MRI:

Magnetic resonance imaging

RV:

Right ventricle, right ventricular

RVOT:

Right ventricular outflow tract

RWMA:

Regional wall motion abnormalities

SAX:

Short-axis

SV:

Stroke volume

SVC:

Superior vena cava

TEE:

Transesophageal echocardiography

TG:

Transgastric

TTE:

Transthoracic echocardiography

References

  1. Gussenhoven EJ, van Herwerden LA, Roelandt J, Ligtvoet KM, Bos E, Witsenburg M. Intraoperative two-dimensional echocardiography in congenital heart disease. J Am Coll Cardiol. 1987;9:565–72.

    Article  PubMed  CAS  Google Scholar 

  2. Hahn RT, Abraham T, Adams MS, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26:921–64.

    Article  PubMed  Google Scholar 

  3. Puchalski MD, Lui GK, Miller-Hance WC, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination in children and all patients with congenital heart disease: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32:173–215.

    Article  PubMed  Google Scholar 

  4. Simpson J, Lopez L, Acar P, et al. Three-dimensional echocardiography in congenital heart disease: an expert consensus document from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017;30:1–27.

    Article  PubMed  Google Scholar 

  5. Mitchell C, Rahko PS, Blauwet LA, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32:1–64.

    Article  PubMed  Google Scholar 

  6. Ozturk E, Cansaran Tanidir I, Ayyildiz P, et al. The role of intraoperative epicardial echocardiography in pediatric cardiac surgery. Echocardiography. 2018;35:999–1004.

    Article  PubMed  Google Scholar 

  7. Johnson ML, Holmes JH, Spangler RD, Paton BC. Usefulness of echocardiography in patients undergoing mitral valve surgery. J Thorac Cardiovasc Surg. 1972;64:922–34.

    Article  PubMed  CAS  Google Scholar 

  8. Spotnitz HM. Two-dimensional ultrasound and cardiac operations. J Thorac Cardiovasc Surg. 1982;83:43–51.

    Article  PubMed  CAS  Google Scholar 

  9. Ungerleider RM, Kisslo JA, Greeley WJ, Van Trigt P, Sabiston DC. Intraoperative prebypass and postbypass epicardial color flow imaging in the repair of atrioventricular septal defects. J Thorac Cardiovasc Surg. 1989;98:90–9.

    Article  PubMed  CAS  Google Scholar 

  10. Ungerleider RM, Greeley WJ, Sheikh KH, et al. Routine use of intraoperative epicardial echocardiography and Doppler color flow imaging to guide and evaluate repair of congenital heart lesions. A prospective study. J Thorac Cardiovasc Surg. 1990;100:297–309.

    Article  PubMed  CAS  Google Scholar 

  11. Ungerleider R. Decision making in pediatric cardiac surgery using intraoperative echo. Int J Card Imaging. 1989;4:33–5.

    Article  PubMed  CAS  Google Scholar 

  12. Hsu YH, Santulli T, Wong AL, Drinkwater D, Laks H, Williams RG. Impact of intraoperative echocardiography on surgical management of congenital heart disease. Am J Cardiol. 1991;67:1279–83.

    Article  PubMed  CAS  Google Scholar 

  13. Ungerleider RM. The use of intraoperative epicardial echocardiography with color flow imaging during the repair of complete atrioventricular septal defects. Cardiol Young. 1992;2:56–64.

    Article  Google Scholar 

  14. Papagiannis J, Kanter RJ, Armstrong BE, Greeley WJ, Ungerleider RM. Intraoperative epicardial echocardiography during repair of tetralogy of Fallot. J Am Soc Echocardiogr. 1993;6:366–73.

    Article  PubMed  CAS  Google Scholar 

  15. Frazin L, Talano JV, Stephanides L, Loeb HS, Kopel L, Gunnar RM. Esophageal echocardiography. Circulation. 1976;54:102–8.

    Article  PubMed  CAS  Google Scholar 

  16. Matsumoto M, Oka Y, Strom J, et al. Application of transesophageal echocardiography to continuous intraoperative monitoring of left ventricular performance. Am J Cardiol. 1980;46:95–105.

    Article  PubMed  CAS  Google Scholar 

  17. Hisanaga K, Hisanaga A, Nagata K, Ichie Y. Transesophageal cross-sectional echocardiography. Am Heart J. 1980;100:605–9.

    Article  PubMed  CAS  Google Scholar 

  18. Hanrath P, Kremer P, Langenstein BA, Matsumoto M, Bleifeld W. [Transesophageal echocardiography. A new method for dynamic ventricle function analysis]. Dtsch Med Wochenschr 1981;106:523–525.

    Google Scholar 

  19. Kyo S, Takamoto S, Matsumura M, et al. Immediate and early postoperative evaluation of results of cardiac surgery by transesophageal two-dimensional Doppler echocardiography. Circulation. 1987;76:V113–21.

    PubMed  CAS  Google Scholar 

  20. Cyran SE, Kimball TR, Meyer RA, et al. Efficacy of intraoperative transesophageal echocardiography in children with congenital heart disease. Am J Cardiol. 1989;63:594–8.

    Article  PubMed  CAS  Google Scholar 

  21. Kyo S, Koike K, Takanawa E, et al. Impact of transesophageal Doppler echocardiography on pediatric cardiac surgery. Int J Card Imaging. 1989;4:41–2.

    Article  PubMed  CAS  Google Scholar 

  22. Ritter SB, Thys D. Pediatric transesophageal color flow imaging: smaller probes for smaller hearts. Echocardiography. 1989;6:431–40.

    Article  Google Scholar 

  23. Ritter SB, Hillel Z, Narang J, Lewis D, Thys D. Transesophageal real-time Doppler flow imaging in congenital heart disease: experience with a new pediatric transducer probe. Dyn Cardiovasc Imaging. 1989;2:92–6.

    Google Scholar 

  24. Ritter SB. Transesophageal echocardiography in children: new peephole to the heart. J Am Coll Cardiol. 1990;16:447–50.

    Article  PubMed  CAS  Google Scholar 

  25. Ritter SB. Pediatric transesophageal color flow imaging 1990: the long and short of it. Echocardiography. 1990;7:713–25.

    Article  PubMed  CAS  Google Scholar 

  26. Stümper OF, Elzenga NJ, Hess J, Sutherland GR. Transesophageal echocardiography in children with congenital heart disease: an initial experience. J Am Coll Cardiol. 1990;16:433–41.

    Article  PubMed  Google Scholar 

  27. Ritter SB. Transesophageal real-time echocardiography in infants and children with congenital heart disease. J Am Coll Cardiol. 1991;18:569–80.

    Article  PubMed  CAS  Google Scholar 

  28. Roberson DA, Muhiudeen IA, Silverman NH. Transesophageal echocardiography in pediatrics: technique and limitations. Echocardiography. 1990;7:699–712.

    Article  Google Scholar 

  29. Muhiudeen IA, Roberson DA, Silverman NH, Haas G, Turley K, Cahalan MK. Intraoperative echocardiography in infants and children with congenital cardiac shunt lesions: transesophageal versus epicardial echocardiography. J Am Coll Cardiol. 1990;16:1687–95.

    Article  PubMed  CAS  Google Scholar 

  30. Stümper O, Kaulitz R, Sreeram N, et al. Intraoperative transesophageal versus epicardial ultrasound in surgery for congenital heart disease. J Am Soc Echocardiogr. 1990;3:392–401.

    Article  PubMed  Google Scholar 

  31. Sreeram N, Stümper OF, Kaulitz R, Hess J, Roelandt JR, Sutherland GR. Comparative value of transthoracic and transesophageal echocardiography in the assessment of congenital abnormalities of the atrioventricular junction. J Am Coll Cardiol. 1990;16:1205–14.

    Article  PubMed  CAS  Google Scholar 

  32. Roberson DA, Muhiudeen IA, Cahalan MK, Silverman NH, Haas G, Turley K. Intraoperative transesophageal echocardiography of ventricular septal defect. Echocardiography. 1991;8:687–97.

    Article  PubMed  CAS  Google Scholar 

  33. Roberson DA, Muhiudeen IA, Silverman NH, Turley K, Haas GS, Cahalan MK. Intraoperative transesophageal echocardiography of atrioventricular septal defect. J Am Coll Cardiol. 1991;18:537–45.

    Article  PubMed  CAS  Google Scholar 

  34. Wienecke M, Fyfe DA, Kline CH, et al. Comparison of intraoperative transesophageal echocardiography to epicardial imaging in children undergoing ventricular septal defect repair. J Am Soc Echocardiogr. 1991;4:607–14.

    Article  PubMed  CAS  Google Scholar 

  35. Muhiudeen IA, Roberson DA, Silverman NH, Haas GS, Turley K, Cahalan MK. Intraoperative echocardiography for evaluation of congenital heart defects in infants and children. Anesthesiology. 1992;76:165–72.

    Article  PubMed  CAS  Google Scholar 

  36. Muhiudeen I, Silverman N. Intraoperative transesophageal echocardiography using high resolution imaging in infants and children with congenital heart disease. Echocardiography. 1993;10:599–608.

    Article  PubMed  CAS  Google Scholar 

  37. Omoto R, Kyo S, Matsumura M, et al. Bi-plane color transesophageal Doppler echocardiography (color TEE): its advantages and limitations. Int J Card Imaging. 1989;4:57–8.

    Article  PubMed  CAS  Google Scholar 

  38. Seward JB, Khandheria BK, Edwards WD, Oh JK, Freeman WK, Tajik AJ. Biplanar transesophageal echocardiography: anatomic correlations, image orientation, and clinical applications. Mayo Clin Proc. 1990;65:1193–213.

    Article  PubMed  CAS  Google Scholar 

  39. Gentles TL, Rosenfeld HM, Sanders SP, Laussen PC, Burke RP, van der Velde ME. Pediatric biplane transesophageal echocardiography: preliminary experience. Am Heart J. 1994;128:1225–33.

    Article  PubMed  CAS  Google Scholar 

  40. Lam J, Neirotti RA, Lubbers WJ, et al. Usefulness of biplane transesophageal echocardiography in neonates, infants and children with congenital heart disease. Am J Cardiol. 1993;72:699–706.

    Article  PubMed  CAS  Google Scholar 

  41. O’Leary PW, Hagler DJ, Seward JB, et al. Biplane intraoperative transesophageal echocardiography in congenital heart disease. Mayo Clin Proc. 1995;70:317–26.

    Article  PubMed  Google Scholar 

  42. Xu J, Shiota T, Ge S, et al. Intraoperative transesophageal echocardiography using high-resolution biplane 7.5 MHz probes with continuous-wave Doppler capability in infants and children with tetralogy of Fallot. Am J Cardiol. 1996;77:539–42.

    Article  PubMed  CAS  Google Scholar 

  43. Hoffman P, Stümper O, Rydelwska-Sadowska W, Sutherland GR. Transgastric imaging: a valuable addition to the assessment of congenital heart disease by transverse plane transesophageal echocardiography. J Am Soc Echocardiogr. 1993;6:35–44.

    Article  PubMed  CAS  Google Scholar 

  44. Muhiudeen IA, Silverman NH, Anderson RH. Transesophageal transgastric echocardiography in infants and children: the subcostal view equivalent. J Am Soc Echocardiogr. 1995;8:231–44.

    Article  PubMed  CAS  Google Scholar 

  45. Flachskampf FA, Hoffmann R, Verlande M, Schneider W, Ameling W, Hanrath P. Initial experience with a multiplane transoesophageal echo-transducer: assessment of diagnostic potential. Eur Heart J. 1992;13:1201–6.

    Article  PubMed  CAS  Google Scholar 

  46. Roelandt JR, Thomson IR, Vletter WB, Brommersma P, Bom N, Linker DT. Multiplane transesophageal echocardiography: latest evolution in an imaging revolution. J Am Soc Echocardiogr. 1992;5:361–7.

    Article  PubMed  CAS  Google Scholar 

  47. Seward JB, Khandheria BK, Freeman WK, et al. Multiplane transesophageal echocardiography: image orientation, examination technique, anatomic correlations, and clinical applications. Mayo Clin Proc. 1993;68:523–51.

    Article  PubMed  CAS  Google Scholar 

  48. Tardif JC, Schwartz SL, Vannan MA, Cao QL, Pandian NG. Clinical usefulness of multiplane transesophageal echocardiography: comparison to biplanar imaging. Am Heart J. 1994;128:156–66.

    Article  PubMed  CAS  Google Scholar 

  49. Yvorchuk KY, Sochowski RA, Chan KL. A prospective comparison of the multiplane probe with the biplane probe in structure visualization and Doppler examination during transesophageal echocardiography. J Am Soc Echocardiogr. 1995;8:111–20.

    Article  PubMed  CAS  Google Scholar 

  50. Cromme-Dijkhuis AH, Djoa KK, Bom N, Hess J. Pediatric transesophageal echocardiography by means of a miniature 5-MHz multiplane transducer. Echocardiography. 1996;13:685–9.

    Article  PubMed  Google Scholar 

  51. Djoa KK, De Jong N, Cromme-Dijkhuis AH, Lancée CT, Bom N. Two decades of transesophageal phased array probes. Ultrasound Med Biol. 1996;22:1–9.

    Article  PubMed  CAS  Google Scholar 

  52. Sloth E, Hasenkam JM, Sørensen KE, et al. Pediatric multiplane transesophageal echocardiography in congenital heart disease: new possibilities with a miniaturized probe. J Am Soc Echocardiogr. 1996;9:622–8.

    Article  PubMed  CAS  Google Scholar 

  53. Lam J, Neirotti RA, Hardjowijono R, Blom-Muilwijk CM, Schuller JL, Visser CA. Transesophageal echocardiography with the use of a four-millimeter probe. J Am Soc Echocardiogr. 1997;10:499–504.

    Article  PubMed  CAS  Google Scholar 

  54. Shiota T, Lewandowski R, Piel JE, et al. Micromultiplane transesophageal echocardiographic probe for intraoperative study of congenital heart disease repair in neonates, infants, children, and adults. Am J Cardiol. 1999;83:292–5.

    Article  PubMed  CAS  Google Scholar 

  55. Rice MJ, Sahn DJ. Transesophageal echocardiography for congenital heart disease--who, what, and when. Mayo Clin Proc. 1995;70:401–2.

    Article  PubMed  CAS  Google Scholar 

  56. Scohy TV, Gommers D, Jan ten Harkel AD, Deryck Y, McGhie J, Bogers AJ. Intraoperative evaluation of micromultiplane transesophageal echocardiographic probe in surgery for congenital heart disease. Eur J Echocardiogr. 2007;8:241–6.

    Article  PubMed  Google Scholar 

  57. Zyblewski SC, Shirali GS, Forbus GA, et al. Initial experience with a miniaturized multiplane transesophageal probe in small infants undergoing cardiac operations. Ann Thorac Surg. 2010;89:1990–4.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pushparajah K, Miller OI, Rawlins D, Barlow A, Nugent K, Simpson JM. Clinical application of a micro multiplane transoesophageal probe in congenital cardiac disease. Cardiol Young. 2012;22:170–7.

    Article  PubMed  Google Scholar 

  59. Bruce CJ, O’Leary P, Hagler DJ, Seward JB, Cabalka AK. Miniaturized transesophageal echocardiography in newborn infants. J Am Soc Echocardiogr. 2002;15:791–7.

    Article  PubMed  Google Scholar 

  60. Ferns S, Komarlu R, Van Bergen A, Multani K, Cui VW, Roberson DA. Transesophageal echocardiography in critically ill acute postoperative infants: comparison of AcuNav intracardiac echocardiographic and microTEE miniaturized transducers. J Am Soc Echocardiogr. 2012;25:874–81.

    Article  PubMed  Google Scholar 

  61. Sugeng L, Shernan SK, Salgo IS, et al. Live 3-dimensional transesophageal echocardiography initial experience using the fully-sampled matrix array probe. J Am Coll Cardiol. 2008;52:446–9.

    Article  PubMed  Google Scholar 

  62. Vegas A, Meineri M. Core review: three-dimensional transesophageal echocardiography is a major advance for intraoperative clinical management of patients undergoing cardiac surgery: a core review. Anesth Analg. 2010;110:1548–73.

    Article  PubMed  Google Scholar 

  63. Lang RM, Badano LP, Tsang W, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25:3–46.

    Article  PubMed  Google Scholar 

  64. Simpson J, Miller O, Bell A, Bellsham-Revell H, McGhie J, Meijboom F. Image orientation for three-dimensional echocardiography of congenital heart disease. Int J Cardiovasc Imaging. 2012;28:743–53.

    Article  PubMed  Google Scholar 

  65. Faletra FF, Nucifora G, Ho SY. Real-time 3-dimensional transesophageal echocardiography of the atrioventricular septal defect. Circ Cardiovasc Imaging. 2011;4:e7–9.

    Article  PubMed  Google Scholar 

  66. Cossor W, Cui VW, Roberson DA. Three-dimensional echocardiographic en face views of ventricular septal defects: feasibility, accuracy, imaging protocols and reference image collection. J Am Soc Echocardiogr. 2015;28:1020–9.

    Article  PubMed  Google Scholar 

  67. Silvestry FE, Cohen MS, Armsby LB, et al. Guidelines for the echocardiographic assessment of atrial septal defect and patent foramen ovale: from the American Society of Echocardiography and Society for Cardiac Angiography and Interventions. J Am Soc Echocardiogr. 2015;28:910–58.

    Article  PubMed  Google Scholar 

  68. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.e14.

    Article  PubMed  Google Scholar 

  69. Zoghbi WA, Adams D, Bonow RO, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30:303–71.

    Article  PubMed  Google Scholar 

  70. Toole BJ, Slesnick TC, Kreeger J, et al. The miniaturized multiplane micro-transesophageal echocardiographic probe: a comparative evaluation of its accuracy and image quality. J Am Soc Echocardiogr. 2015;28:802–7.

    Article  PubMed  Google Scholar 

  71. Miller-Hance WC, Silverman NH. Transesophageal echocardiography (TEE) in congenital heart disease with focus on the adult. Cardiol Clin. 2000;18:861–92.

    Article  PubMed  CAS  Google Scholar 

  72. Russell IA, Rouine-Rapp K, Stratmann G, Miller-Hance WC. Congenital heart disease in the adult: a review with internet-accessible transesophageal echocardiographic images. Anesth Analg. 2006;102:694–723.

    Article  PubMed  Google Scholar 

  73. Kamra K, Russell I, Miller-Hance WC. Role of transesophageal echocardiography in the management of pediatric patients with congenital heart disease. Paediatr Anaesth. 2011;21:479–93.

    Article  PubMed  Google Scholar 

  74. Stümper O, Fraser AG, Elzenga N, et al. Assessment of ventricular septal defect closure by intraoperative epicardial ultrasound. J Am Coll Cardiol. 1990;16:1672–9.

    Article  PubMed  Google Scholar 

  75. Fyfe DA, Kline CH, Sade RM, Greene CA, Gillette PC. The utility of transesophageal echocardiography during and after Fontan operations in small children. Am Heart J. 1991;122:1403–15.

    Article  PubMed  CAS  Google Scholar 

  76. Fyfe DA, Kline CH. Transesophageal echocardiography for congenital heart disease. Echocardiography. 1991;8:573–86.

    Article  PubMed  CAS  Google Scholar 

  77. Lam J, Neirotti RA, Nijveld A, Schuller JL, Blom-Muilwijk CM, Visser CA. Transesophageal echocardiography in pediatric patients: preliminary results. J Am Soc Echocardiogr. 1991;4:43–50.

    Article  PubMed  CAS  Google Scholar 

  78. Stumper O. Transesophageal echocardiography: a new diagnostic method in paediatric cardiology. Arch Dis Child. 1991;66:1175–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Stümper O, Kaulitz R, Elzenga NJ, et al. The value of transesophageal echocardiography in children with congenital heart disease. J Am Soc Echocardiogr. 1991;4:164–76.

    Article  PubMed  Google Scholar 

  80. Tee SD, Shiota T, Weintraub R, et al. Evaluation of ventricular septal defect by transesophageal echocardiography: intraoperative assessment. Am Heart J. 1994;127:585–92.

    Article  PubMed  CAS  Google Scholar 

  81. Shuler CO, Fyfe DA, Sade R, Crawford FA. Transesophageal echocardiographic evaluation of cor triatriatum in children. Am Heart J. 1995;129:507–10.

    Article  PubMed  CAS  Google Scholar 

  82. Stevenson JG. Role of intraoperative transesophageal echocardiography during repair of congenital cardiac defects. Acta Paediatr Suppl. 1995;410:23–33.

    Article  PubMed  CAS  Google Scholar 

  83. Bezold LI, Pignatelli R, Altman CA, et al. Intraoperative transesophageal echocardiography in congenital heart surgery. The Texas Children’s Hospital experience. Tex Heart Inst J. 1996;23:108–15.

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Bengur AR, Li JS, Herlong JR, Jaggers J, Sanders SP, Ungerleider RM. Intraoperative transesophageal echocardiography in congenital heart disease. Semin Thorac Cardiovasc Surg. 1998;10:255–64.

    Article  PubMed  CAS  Google Scholar 

  85. Kavanaugh-McHugh A, Tobias JD, Doyle T, Heitmiller ES, Meagher C. Transesophageal echocardiography in pediatric congenital heart disease. Cardiol Rev. 2000;8:288–306.

    Article  PubMed  CAS  Google Scholar 

  86. Lim DS, Dent JM, Gutgesell HP, Matherne GP, Kron IL. Transesophageal echocardiographic guidance for surgical repair of aortic insufficiency in congenital heart disease. J Am Soc Echocardiogr. 2007;20:1080–5.

    Article  PubMed  Google Scholar 

  87. Ungerleider RM, Kisslo JA, Greeley WJ, et al. Intraoperative echocardiography during congenital heart operations: experience from 1,000 cases. Ann Thorac Surg. 1995;60:S539–42.

    Article  PubMed  CAS  Google Scholar 

  88. Sloth E, Pedersen J, Olsen KH, Wanscher M, Hansen OK, Sørensen KE. Transoesophageal echocardiographic monitoring during paediatric cardiac surgery: obtainable information and feasibility in 532 children. Paediatr Anaesth. 2001;11:657–62.

    Article  PubMed  CAS  Google Scholar 

  89. Randolph GR, Hagler DJ, Connolly HM, et al. Intraoperative transesophageal echocardiography during surgery for congenital heart defects. J Thorac Cardiovasc Surg. 2002;124:1176–82.

    Article  PubMed  Google Scholar 

  90. Yumoto M, Katsuya H. Transesophageal echocardiography for cardiac surgery in children. J Cardiothorac Vasc Anesth. 2002;16:587–91.

    Article  PubMed  Google Scholar 

  91. Bettex DA, Schmidlin D, Bernath MA, et al. Intraoperative transesophageal echocardiography in pediatric congenital cardiac surgery: a two-center observational study. Anesth Analg. 2003;97:1275–82.

    Article  PubMed  Google Scholar 

  92. Ma XJ, Huang GY, Liang XC, et al. Transoesophageal echocardiography in monitoring, guiding, and evaluating surgical repair of congenital cardiac malformations in children. Cardiol Young. 2007;17:301–6.

    Article  PubMed  Google Scholar 

  93. Guzeltas A, Ozyilmaz I, Tanidir C, et al. The significance of transesophageal echocardiography in assessing congenital heart disease: our experience. Congenit Heart Dis. 2014;9:300–6.

    Article  PubMed  Google Scholar 

  94. Jijeh AM, Omran AS, Najm HK, Abu-Sulaiman RM. Role of intraoperative transesophageal echocardiography in pediatric cardiac surgery. J Saudi Heart Assoc. 2016;28:89–94.

    Article  PubMed  Google Scholar 

  95. Stevenson JG, Sorensen GK, Gartman DM, Hall DG, Rittenhouse EA. Transesophageal echocardiography during repair of congenital cardiac defects: identification of residual problems necessitating reoperation. J Am Soc Echocardiogr. 1993;6:356–65.

    Article  PubMed  CAS  Google Scholar 

  96. Komai H, Naito Y, Fujiwara K, Uemura S. The benefits of surgical atrial septostomy guided by transesophageal echocardiography in pediatric patients. J Thorac Cardiovasc Surg. 1999;118:758–9.

    Article  PubMed  CAS  Google Scholar 

  97. Kawahito S, Kitahata H, Tanaka K, et al. Intraoperative management of a pediatric patient undergoing cardiac tumor resection with the aid of transesophageal and epicardial echocardiography. Anesth Analg. 1999;88:1048–50.

    PubMed  CAS  Google Scholar 

  98. Kawahito S, Kitahata H, Tanaka K, Nozaki J, Oshita S. Intraoperative evaluation of pulmonary artery flow during the Fontan procedure by transesophageal Doppler echocardiography. Anesth Analg. 2000;91:1375–80.

    Article  PubMed  CAS  Google Scholar 

  99. Chen TH, Chan KC, Cheng YJ, Wang MJ, Tsai SK. Bedside pericardiocentesis under the guidance of transesophageal echocardiography in a 13-month-old boy. J Formos Med Assoc. 2001;100:620–2.

    PubMed  CAS  Google Scholar 

  100. Boddu K, Vavilala MS, Stevenson JG, Lam AM. The use of transesophageal echocardiography to facilitate removal of a thoracic nail. Anesth Analg. 2002;95:624–6.

    Article  PubMed  Google Scholar 

  101. Nitta K, Kawahito S, Kitahata H, Nozaki J, Katayama T, Oshita S. Two unusual complications associated with cardiopulmonary bypass for pediatric cardiac surgery detected by transesophageal echocardiography after decannulation. Paediatr Anaesth. 2008;18:325–9.

    Article  PubMed  Google Scholar 

  102. Lavoie J, Burrows FA, Gentles TL, Sanders SP, Burke RP, Javorski JJ. Transoesophageal echocardiography detects residual ductal flow during video-assisted thoracoscopic patent ductus arteriosus interruption. Can J Anaesth. 1994;41:310–3.

    Article  PubMed  CAS  Google Scholar 

  103. Lavoie J, Javorski JJ, Donahue K, Sanders SP, Burke RP, Burrows FA. Detection of residual flow by transesophageal echocardiography during video-assisted thoracoscopic patent ductus arteriosus interruption. Anesth Analg. 1995;80:1071–5.

    PubMed  CAS  Google Scholar 

  104. Ho AC, Tan PP, Yang MW, et al. The use of multiplane transesophageal echocardiography to evaluate residual patent ductus arteriosus during video-assisted thoracoscopy in adults. Surg Endosc. 1999;13:975–9.

    Article  PubMed  CAS  Google Scholar 

  105. Ho AC, Chen CK, Yang MW, Chu JJ, Lin PJ. Usefulness of intraoperative transesophageal echocardiography in the assessment of surgical repair of pediatric ventricular septal defects with video-assisted endoscopic techniques in children. Chang Gung Med J. 2004;27:646–53.

    PubMed  Google Scholar 

  106. Bacha EA, Cao QL, Galantowicz ME, et al. Multicenter experience with perventricular device closure of muscular ventricular septal defects. Pediatr Cardiol. 2005;26:169–75.

    Article  PubMed  CAS  Google Scholar 

  107. Gan C, An Q, Lin K, et al. Perventricular device closure of ventricular septal defects: six months results in 30 young children. Ann Thorac Surg. 2008;86:142–6.

    Article  PubMed  Google Scholar 

  108. Fyfe DA, Ritter SB, Snider AR, et al. Guidelines for transesophageal echocardiography in children. J Am Soc Echocardiogr. 1992;5:640–4.

    Article  PubMed  CAS  Google Scholar 

  109. Practice guidelines for perioperative transesophageal echocardiography. A report by the American Society of Anesthesiologists and the Society of Cardiovascular Anesthesiologists Task Force on Transesophageal Echocardiography. Anesthesiology. 1996;84:986–1006.

    Google Scholar 

  110. Cheitlin MD, Alpert JS, Armstrong WF, et al. ACC/AHA guidelines for the clinical application of echocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. Circulation. 1997;95:1686–744.

    Article  PubMed  CAS  Google Scholar 

  111. Cheitlin MD, Armstrong WF, Aurigemma GP, et al. ACC/AHA/ASE 2003 Guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Circulation. 2003;108:1146–62.

    Article  PubMed  Google Scholar 

  112. Stevenson JG. Utilization of intraoperative transesophageal echocardiography during repair of congenital cardiac defects: a survey of North American centers. Clin Cardiol. 2003;26:132–4.

    Article  PubMed  Google Scholar 

  113. Ayres NA, Miller-Hance W, Fyfe DA, et al. Indications and guidelines for performance of transesophageal echocardiography in the patient with pediatric acquired or congenital heart disease: report from the task force of the Pediatric Council of the American Society of Echocardiography. J Am Soc Echocardiogr. 2005;18:91–8.

    Article  PubMed  Google Scholar 

  114. American Society of Anesthesiologists and Society of Cardiovascular Anesthesiologists Task Force on Transesophageal Echocardiography. Practice guidelines for perioperative transesophageal echocardiography. An updated report by the American Society of Anesthesiologists and the Society of Cardiovascular Anesthesiologists Task Force on Transesophageal Echocardiography. Anesthesiology. 2010;112:1084–96.

    Google Scholar 

  115. Sawchuk C, Fayad A. Confirmation of internal jugular guide wire position utilizing transesophageal echocardiography. Can J Anaesth. 2001;48:688–90.

    Article  PubMed  CAS  Google Scholar 

  116. Mahmood F, Sundar S, Khabbaz K. Misplacement of a guidewire diagnosed by transesophageal echocardiography. J Cardiothorac Vasc Anesth. 2007;21:420–1.

    Article  PubMed  Google Scholar 

  117. Andropoulos DB. Transesophageal echocardiography as a guide to central venous catheter placement in pediatric patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 1999;13:320–1.

    Article  PubMed  CAS  Google Scholar 

  118. Chaney MA, Minhaj MM, Patel K, Muzic D. Transoesophageal echocardiography and central line insertion. Ann Card Anaesth. 2007;10:127–31.

    Article  PubMed  Google Scholar 

  119. Hsu JH, Wang CK, Hung CW, Wang SS, Cheng KI, Wu JR. Transesophageal echocardiography and laryngeal mask airway for placement of permanent central venous catheter in cancer patients with radiographically unidentifiable SVC-RA junction: effectiveness and safety. Kaohsiung J Med Sci. 2007;23:435–41.

    Article  PubMed  Google Scholar 

  120. Andropoulos DB, Stayer SA, Bent ST, et al. A controlled study of transesophageal echocardiography to guide central venous catheter placement in congenital heart surgery patients. Anesth Analg. 1999;89:65–70.

    Article  PubMed  CAS  Google Scholar 

  121. Gold JP, Jonas RA, Lang P, Elixson EM, Mayer JE, Castaneda AR. Transthoracic intracardiac monitoring lines in pediatric surgical patients: a ten-year experience. Ann Thorac Surg. 1986;42:185–91.

    Article  PubMed  CAS  Google Scholar 

  122. Flori HR, Johnson LD, Hanley FL, Fineman JR. Transthoracic intracardiac catheters in pediatric patients recovering from congenital heart defect surgery: associated complications and outcomes. Crit Care Med. 2000;28:2997–3001.

    Article  PubMed  CAS  Google Scholar 

  123. Rimensberger PC, Beghetti M. Pulmonary artery catheter placement under transoesophageal echocardiography guidance. Paediatr Anaesth. 1999;9:167–70.

    Article  PubMed  CAS  Google Scholar 

  124. Eguchi S, Bosher LH. Myocardial dysfunction resulting from coronary air embolism. Surgery. 1962;51:103–11.

    PubMed  CAS  Google Scholar 

  125. Goldfarb D, Bahnson H. Early and late effects on the heart of small amounts of air in the coronary circulation. J Thorac Cardiovasc Surg. 1963;46:368–78.

    Article  PubMed  CAS  Google Scholar 

  126. Borger MA, Peniston CM, Weisel RD, Vasiliou M, Green RE, Feindel CM. Neuropsychologic impairment after coronary bypass surgery: effect of gaseous microemboli during perfusionist interventions. J Thorac Cardiovasc Surg. 2001;121:743–9.

    Article  PubMed  CAS  Google Scholar 

  127. Fearn SJ, Pole R, Burgess M, Ray SG, Hooper TL, McCollum CN. Cerebral embolisation during modern cardiopulmonary bypass. Eur J Cardiothorac Surg. 2001;20:1163–7.

    Article  PubMed  CAS  Google Scholar 

  128. Duff HJ, Buda AJ, Kramer R, Strauss HD, David TE, Berman ND. Detection of entrapped intracardiac air with intraoperative echocardiography. Am J Cardiol. 1980;46:255–60.

    Article  PubMed  CAS  Google Scholar 

  129. Oka Y, Moriwaki KM, Hong Y, et al. Detection of air emboli in the left heart by M-mode transesophageal echocardiography following cardiopulmonary bypass. Anesthesiology. 1985;63:109–13.

    Article  PubMed  CAS  Google Scholar 

  130. Topol EJ, Humphrey LS, Borkon AM, et al. Value of intraoperative left ventricular microbubbles detected by transesophageal two-dimensional echocardiography in predicting neurologic outcome after cardiac operations. Am J Cardiol. 1985;56:773–5.

    Article  PubMed  CAS  Google Scholar 

  131. Diehl JT, Ramos D, Dougherty F, Pandian NG, Payne DD, Cleveland RJ. Intraoperative, two-dimensional echocardiography-guided removal of retained intracardiac air. Ann Thorac Surg. 1987;43:674–5.

    Article  PubMed  CAS  Google Scholar 

  132. Meloni L, Abbruzzese PA, Cardu G, et al. Detection of microbubbles released by oxygenators during cardiopulmonary bypass by intraoperative transesophageal echocardiography. Am J Cardiol. 1990;66:511–4.

    Article  PubMed  CAS  Google Scholar 

  133. Orihashi K, Matsuura Y, Hamanaka Y, et al. Retained intracardiac air in open heart operations examined by transesophageal echocardiography. Ann Thorac Surg. 1993;55:1467–71.

    Article  PubMed  CAS  Google Scholar 

  134. Dalmas JP, Eker A, Girard C, et al. Intracardiac air clearing in valvular surgery guided by transesophageal echocardiography. J Heart Valve Dis. 1996;5:553–7.

    PubMed  CAS  Google Scholar 

  135. Orihashi K, Matsuura Y, Sueda T, Shikata H, Mitsui N, Sueshiro M. Pooled air in open heart operations examined by transesophageal echocardiography. Ann Thorac Surg. 1996;61:1377–80.

    Article  PubMed  CAS  Google Scholar 

  136. Hoka S, Okamoto H, Yamaura K, Takahashi S, Tominaga R, Yasui H. Removal of retained air during cardiac surgery with transesophageal echocardiography and capnography. J Clin Anesth. 1997;9:457–61.

    Article  PubMed  CAS  Google Scholar 

  137. Greeley WJ, Kern FH, Ungerleider RM, Kisslo JA. Intramyocardial air causes right ventricular dysfunction after repair of a congenital heart defect. Anesthesiology. 1990;73:1042–6.

    Article  PubMed  CAS  Google Scholar 

  138. Cassorla L, Miller-Hance WC, Rouine-Rapp K, Reddy VM, Hanley FL, Silverman NH. Reliability of intraoperative contrast transesophageal echocardiography for detecting interatrial communications in patients with other congenital cardiovascular malformations. Am J Cardiol. 2003;91:1027–31.

    Article  PubMed  Google Scholar 

  139. Tousignant CP, Walsh F, Mazer CD. The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg. 2000;90:351–5.

    Article  PubMed  CAS  Google Scholar 

  140. Buhre W, Buhre K, Kazmaier S, Sonntag H, Weyland A. Assessment of cardiac preload by indicator dilution and transoesophageal echocardiography. Eur J Anaesthesiol. 2001;18:662–7.

    Article  PubMed  CAS  Google Scholar 

  141. Stoddard MF, Longaker RA, Calzada N. Left atrial inflow propagation rate: a new transesophageal echocardiographic index of preload. J Am Soc Echocardiogr. 2002;15:1057–64.

    Article  PubMed  Google Scholar 

  142. Cheung AT, Savino JS, Weiss SJ, Aukburg SJ, Berlin JA. Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology. 1994;81:376–87.

    Article  PubMed  CAS  Google Scholar 

  143. Swenson JD, Harkin C, Pace NL, Astle K, Bailey P. Transesophageal echocardiography: an objective tool in defining maximum ventricular response to intravenous fluid therapy. Anesth Analg. 1996;83:1149–53.

    Article  PubMed  CAS  Google Scholar 

  144. Hofer CK, Ganter MT, Rist A, Klaghofer R, Matter-Ensner S, Zollinger A. The accuracy of preload assessment by different transesophageal echocardiographic techniques in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2008;22:236–42.

    Article  PubMed  Google Scholar 

  145. Bu L, Munns S, Zhang H, et al. Rapid full volume data acquisition by real-time 3-dimensional echocardiography for assessment of left ventricular indexes in children: a validation study compared with magnetic resonance imaging. J Am Soc Echocardiogr. 2005;18:299–305.

    Article  PubMed  Google Scholar 

  146. Lu X, Xie M, Tomberlin D, et al. How accurately, reproducibly, and efficiently can we measure left ventricular indices using M-mode, 2-dimensional, and 3-dimensional echocardiography in children. Am Heart J. 2008;155:946–53.

    Article  PubMed  Google Scholar 

  147. Balluz R, Liu L, Zhou X, Ge S. Real-time three-dimensional echocardiography for quantification of ventricular volumes, mass, and function in children with congenital and acquired heart diseases. Echocardiography. 2013;30:472–82.

    Article  PubMed  Google Scholar 

  148. Altmann K, Shen Z, Boxt LM, et al. Comparison of three-dimensional echocardiographic assessment of volume, mass, and function in children with functionally single left ventricles with two-dimensional echocardiography and magnetic resonance imaging. Am J Cardiol. 1997;80:1060–5.

    Article  PubMed  CAS  Google Scholar 

  149. van den Bosch AE, Robbers-Visser D, Krenning BJ, et al. Real-time transthoracic three-dimensional echocardiographic assessment of left ventricular volume and ejection fraction in congenital heart disease. J Am Soc Echocardiogr. 2006;19:1–6.

    Article  PubMed  Google Scholar 

  150. Riehle TJ, Mahle WT, Parks WJ, Sallee D, Fyfe DA. Real-time three-dimensional echocardiographic acquisition and quantification of left ventricular indices in children and young adults with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr. 2008;21:78–83.

    Article  PubMed  Google Scholar 

  151. Grossgasteiger M, Hien MD, Graser B, et al. Assessment of left ventricular size and function during cardiac surgery. An intraoperative evaluation of six two-dimensional echocardiographic methods with real-time three-dimensional echocardiography as a reference. Echocardiography. 2013;30:672–81.

    Article  PubMed  Google Scholar 

  152. Meris A, Santambrogio L, Casso G, Mauri R, Engeler A, Cassina T. Intraoperative three-dimensional versus two-dimensional echocardiography for left ventricular assessment. Anesth Analg. 2014;118:711–20.

    Article  PubMed  Google Scholar 

  153. Smith MD, MacPhail B, Harrison MR, Lenhoff SJ, DeMaria AN. Value and limitations of transesophageal echocardiography in determination of left ventricular volumes and ejection fraction. J Am Coll Cardiol. 1992;19:1213–22.

    Article  PubMed  CAS  Google Scholar 

  154. Laser KT, Bunge M, Hauffe P, et al. Left ventricular volumetry in healthy children and adolescents: comparison of two different real-time three-dimensional matrix transducers with cardiovascular magnetic resonance. Eur J Echocardiogr. 2010;11:138–48.

    Article  PubMed  Google Scholar 

  155. Shimada YJ, Shiota T. A meta-analysis and investigation for the source of bias of left ventricular volumes and function by three-dimensional echocardiography in comparison with magnetic resonance imaging. Am J Cardiol. 2011;107:126–38.

    Article  PubMed  Google Scholar 

  156. Swenson JD, Bull D, Stringham J. Subjective assessment of left ventricular preload using transesophageal echocardiography: corresponding pulmonary artery occlusion pressures. J Cardiothorac Vasc Anesth. 2001;15:580–3.

    Article  PubMed  CAS  Google Scholar 

  157. Reich DL, Konstadt SN, Nejat M, Abrams HP, Bucek J. Intraoperative transesophageal echocardiography for the detection of cardiac preload changes induced by transfusion and phlebotomy in pediatric patients. Anesthesiology. 1993;79:10–5.

    Article  PubMed  CAS  Google Scholar 

  158. Poortmans G, Schüpfer G, Roosens C, Poelaert J. Transesophageal echocardiographic evaluation of left ventricular function. J Cardiothorac Vasc Anesth. 2000;14:588–98.

    Article  PubMed  CAS  Google Scholar 

  159. Lopez L, Colan SD, Frommelt PC, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2010;23:465–95.

    Article  PubMed  Google Scholar 

  160. Tei C. New non-invasive index for combined systolic and diastolic ventricular function. J Cardiol. 1995;26:135–6.

    PubMed  CAS  Google Scholar 

  161. Eidem BW, Tei C, O’Leary PW, Cetta F, Seward JB. Nongeometric quantitative assessment of right and left ventricular function: myocardial performance index in normal children and patients with Ebstein anomaly. J Am Soc Echocardiogr. 1998;11:849–56.

    Article  PubMed  CAS  Google Scholar 

  162. Eidem BW, O’Leary PW, Tei C, Seward JB. Usefulness of the myocardial performance index for assessing right ventricular function in congenital heart disease. Am J Cardiol. 2000;86:654–8.

    Article  PubMed  CAS  Google Scholar 

  163. Roberson DA, Cui W. Right ventricular Tei index in children: effect of method, age, body surface area, and heart rate. J Am Soc Echocardiogr. 2007;20:764–70.

    Article  PubMed  Google Scholar 

  164. Ikemba CM, Su JT, Stayer SA, et al. Myocardial performance index with sevoflurane-pancuronium versus fentanyl-midazolam-pancuronium in infants with a functional single ventricle. Anesthesiology. 2004;101:1298–305.

    Article  PubMed  CAS  Google Scholar 

  165. Fernandes JMG, de Oliveira RB, Rivera IR, et al. Clinical value of myocardial performance index in patients with isolated diastolic dysfunction. Cardiovasc Ultrasound. 2019;17:17.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Moller JE, Poulsen SH, Egstrup K. Effect of preload alternations on a new Doppler echocardiographic index of combined systolic and diastolic performance. J Am Soc Echocardiogr. 1999;12:1065–72.

    Article  PubMed  CAS  Google Scholar 

  167. Davlouros PA, Niwa K, Webb G, Gatzoulis MA. The right ventricle in congenital heart disease. Heart. 2006;92(Suppl 1):i27–38.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Roche SL, Redington AN. The failing right ventricle in congenital heart disease. Can J Cardiol. 2013;29:768–78.

    Article  PubMed  Google Scholar 

  169. Friedberg MK, Reddy S. Right ventricular failure in congenital heart disease. Curr Opin Pediatr. 2019;5:604–10.

    Article  Google Scholar 

  170. Brida M, Diller GP, Gatzoulis MA. Systemic right ventricle in adults with congenital heart disease: anatomic and phenotypic spectrum and current approach to management. Circulation. 2018;137:508–18.

    Article  PubMed  Google Scholar 

  171. Kasper J, Bolliger D, Skarvan K, Buser P, Filipovic M, Seeberger MD. Additional cross-sectional transesophageal echocardiography views improve perioperative right heart assessment. Anesthesiology. 2012;117:726–34.

    Article  PubMed  Google Scholar 

  172. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.

    Article  PubMed  Google Scholar 

  173. Lu X, Nadvoretskiy V, Bu L, et al. Accuracy and reproducibility of real-time three-dimensional echocardiography for assessment of right ventricular volumes and ejection fraction in children. J Am Soc Echocardiogr. 2008;21:84–9.

    Article  PubMed  Google Scholar 

  174. Grewal J, Majdalany D, Syed I, Pellikka P, Warnes CA. Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr. 2010;23:127–33.

    Article  PubMed  Google Scholar 

  175. Leibundgut G, Rohner A, Grize L, et al. Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients. J Am Soc Echocardiogr. 2010;23:116–26.

    Article  PubMed  Google Scholar 

  176. Tamborini G, Marsan NA, Gripari P, et al. Reference values for right ventricular volumes and ejection fraction with real-time three-dimensional echocardiography: evaluation in a large series of normal subjects. J Am Soc Echocardiogr. 2010;23:109–15.

    Article  PubMed  Google Scholar 

  177. Dragulescu A, Grosse-Wortmann L, Fackoury C, Mertens L. Echocardiographic assessment of right ventricular volumes: a comparison of different techniques in children after surgical repair of tetralogy of Fallot. Eur Heart J Cardiovasc Imaging. 2012;13:596–604.

    Article  PubMed  Google Scholar 

  178. Maffessanti F, Muraru D, Esposito R, et al. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circ Cardiovasc Imaging. 2013;6:700–10.

    Article  PubMed  Google Scholar 

  179. Renella P, Marx GR, Zhou J, Gauvreau K, Geva T. Feasibility and reproducibility of three-dimensional echocardiographic assessment of right ventricular size and function in pediatric patients. J Am Soc Echocardiogr. 2014;27:903–10.

    Article  PubMed  Google Scholar 

  180. Fusini L, Tamborini G, Gripari P, et al. Feasibility of intraoperative three-dimensional transesophageal echocardiography in the evaluation of right ventricular volumes and function in patients undergoing cardiac surgery. J Am Soc Echocardiogr. 2011;24:868–77.

    Article  PubMed  Google Scholar 

  181. Nishimura RA, Tajik AJ. Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J Am Coll Cardiol. 1997;30:8–18.

    Article  PubMed  CAS  Google Scholar 

  182. Schmitz L, Koch H, Bein G, Brockmeier K. Left ventricular diastolic function in infants, children, and adolescents. Reference values and analysis of morphologic and physiologic determinants of echocardiographic Doppler flow signals during growth and maturation. J Am Coll Cardiol. 1998;32:1441–8.

    Article  PubMed  CAS  Google Scholar 

  183. Bernard F, Denault A, Babin D, et al. Diastolic dysfunction is predictive of difficult weaning from cardiopulmonary bypass. Anesth Analg. 2001;92:291–8.

    Article  PubMed  CAS  Google Scholar 

  184. Swaminathan M, Nicoara A, Phillips-Bute BG, et al. Utility of a simple algorithm to grade diastolic dysfunction and predict outcome after coronary artery bypass graft surgery. Ann Thorac Surg. 2011;91:1844–50.

    Article  PubMed  Google Scholar 

  185. Border WL, Michelfelder EC, Glascock BJ, et al. Color M-mode and Doppler tissue evaluation of diastolic function in children: simultaneous correlation with invasive indices. J Am Soc Echocardiogr. 2003;16:988–94.

    Article  PubMed  Google Scholar 

  186. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29:277–314.

    Article  PubMed  Google Scholar 

  187. Gidding SS, Snider AR, Rocchini AP, Peters J, Farnsworth R. Left ventricular diastolic filling in children with hypertrophic cardiomyopathy: assessment with pulsed Doppler echocardiography. J Am Coll Cardiol. 1986;8:310–6.

    Article  PubMed  CAS  Google Scholar 

  188. Olivier M, O’Leary PW, Pankratz VS, et al. Serial Doppler assessment of diastolic function before and after the Fontan operation. J Am Soc Echocardiogr. 2003;16:1136–43.

    Article  PubMed  Google Scholar 

  189. McMahon CJ, Nagueh SF, Pignatelli RH, et al. Characterization of left ventricular diastolic function by tissue Doppler imaging and clinical status in children with hypertrophic cardiomyopathy. Circulation. 2004;109:1756–62.

    Article  PubMed  Google Scholar 

  190. Fazio G, Pipitone S, Iacona MA, et al. Evaluation of diastolic function by the tissue Doppler in children affected by non-compaction (letter). Int J Cardiol. 2007;116:e60–2.

    Article  PubMed  Google Scholar 

  191. Harahsheh A, Aggarwal S, Pettersen MD, L’Ecuyer T. Diastolic function in anthracycline-treated children. Cardiol Young. 2015;25:1130–5.

    Article  PubMed  Google Scholar 

  192. Yim DL, Jones BO, Alexander PM, d’Udekem Y, Cheung MM. Effect of anti-heart failure therapy on diastolic function in children with single-ventricle circulations. Cardiol Young. 2015;25:1293–9.

    Article  PubMed  Google Scholar 

  193. Castello R, Pearson AC, Lenzen P, Labovitz AJ. Evaluation of pulmonary venous flow by transesophageal echocardiography in subjects with a normal heart: comparison with transthoracic echocardiography. J Am Coll Cardiol. 1991;18:65–71.

    Article  PubMed  CAS  Google Scholar 

  194. Margossian R, Sleeper LA, Pearson GD, et al. Assessment of diastolic function in single-ventricle patients after the Fontan procedure. J Am Soc Echocardiogr. 2016;29:1066–73.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Nadorlik H, Stiver C, Khan S, et al. Correlations between echocardiographic systolic and diastolic function with cardiac catheterization in biventricular congenital heart patients. Pediatr Cardiol. 2016;37:765–71.

    Article  PubMed  CAS  Google Scholar 

  196. Mawad W, Friedberg MK. The continuing challenge of evaluating diastolic function by echocardiography in children: developing concepts and newer modalities. Curr Opin Cardiol. 2017;32:93–100.

    Article  PubMed  Google Scholar 

  197. DiLorenzo M, Hwang WT, Goldmuntz E, Ky B, Mercer-Rosa L. Diastolic dysfunction in tetralogy of Fallot: comparison of echocardiography with catheterization. Echocardiography. 2018;35:1641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Smith JS, Cahalan MK, Benefiel DJ, et al. Intraoperative detection of myocardial ischemia in high-risk patients: electrocardiography versus two-dimensional transesophageal echocardiography. Circulation. 1985;72:1015–21.

    Article  PubMed  CAS  Google Scholar 

  199. van Daele ME, Sutherland GR, Mitchell MM, et al. Do changes in pulmonary capillary wedge pressure adequately reflect myocardial ischemia during anesthesia? A correlative preoperative hemodynamic, electrocardiographic, and transesophageal echocardiographic study. Circulation. 1990;81:865–71.

    Article  PubMed  Google Scholar 

  200. Moisés VA, Mesquita CB, Campos O, et al. Importance of intraoperative transesophageal echocardiography during coronary artery surgery without cardiopulmonary bypass. J Am Soc Echocardiogr. 1998;11:1139–44.

    Article  PubMed  Google Scholar 

  201. Balaguru D, Auslender M, Colvin SB, Rutkowski M, Artman M, Phoon CK. Intraoperative myocardial ischemia recognized by transesophageal echocardiography monitoring in the pediatric population: a report of 3 cases. J Am Soc Echocardiogr. 2000;13:615–8.

    Article  PubMed  CAS  Google Scholar 

  202. Rouine-Rapp K, Rouillard KP, Miller-Hance W, et al. Segmental wall-motion abnormalities after an arterial switch operation indicate ischemia. Anesth Analg. 2006;103:1139–46.

    Article  PubMed  Google Scholar 

  203. Wong D, Golding F, Hess L, et al. Intraoperative coronary artery pulse Doppler patterns in patients with complete transposition of the great arteries undergoing the arterial switch operation. Am Heart J. 2008;156:466–72.

    Article  PubMed  Google Scholar 

  204. Nield LE, Dragulescu A, MacColl C, et al. Coronary artery Doppler patterns are associated with clinical outcomes post-arterial switch operation for transposition of the great arteries. Eur Heart J Cardiovasc Imaging. 2018;19:461–8.

    Article  PubMed  Google Scholar 

  205. Benson MJ, Cahalan MK. Cost-benefit analysis of transesophageal echocardiography in cardiac surgery. Echocardiography. 1995;12:171–83.

    Article  PubMed  CAS  Google Scholar 

  206. Siwik ES, Spector ML, Patel CR, Zahka KG. Costs and cost-effectiveness of routine transesophageal echocardiography in congenital heart surgery. Am Heart J. 1999;138:771–6.

    Article  PubMed  CAS  Google Scholar 

  207. Bettex DA, Prêtre R, Jenni R, Schmid ER. Cost-effectiveness of routine intraoperative transesophageal echocardiography in pediatric cardiac surgery: a 10-year experience. Anesth Analg. 2005;100:1271–5.

    Article  PubMed  Google Scholar 

  208. Levin DN, Taras J, Taylor K. The cost effectiveness of transesophageal echocardiography for pediatric cardiac surgery: a systematic review. Paediatr Anaesth. 2016;26:682–93.

    Article  PubMed  Google Scholar 

  209. Seward JB, Khandheria BK, Oh JK, Freeman WK, Tajik AJ. Critical appraisal of transesophageal echocardiography: limitations, pitfalls, and complications. J Am Soc Echocardiogr. 1992;5:288–305.

    Article  PubMed  CAS  Google Scholar 

  210. Konstadt SN, Reich DL, Quintana C, Levy M. The ascending aorta: how much does transesophageal echocardiography see? Anesth Analg. 1994;78:240–4.

    Article  PubMed  CAS  Google Scholar 

  211. Khandheria BK, Seward JB, Tajik AJ. Critical appraisal of transesophageal echocardiography: limitations and pitfalls. Crit Care Clin. 1996;12:235–51.

    Article  PubMed  CAS  Google Scholar 

  212. Dragulescu A, Golding F, Van Arsdell G, et al. The impact of additional epicardial imaging to transesophageal echocardiography on intraoperative detection of residual lesions in congenital heart surgery. J Thorac Cardiovasc Surg. 2012;143:361–7.

    Article  PubMed  Google Scholar 

  213. Kim HK, Kim WH, Hwang SW, et al. Predictive value of intraoperative transesophageal echocardiography in complete atrioventricular septal defect. Ann Thorac Surg. 2005;80:56–9.

    Article  PubMed  Google Scholar 

  214. le Polain de Waroux JB, Pouleur AC, Robert A, et al. Mechanisms of recurrent aortic regurgitation after aortic valve repair: predictive value of intraoperative transesophageal echocardiography. JACC Cardiovasc Imaging. 2009;2:931–9.

    Article  Google Scholar 

  215. Hanna BM, El-Hewala AA, Gruber PJ, Gaynor JW, Spray TL, Seliem MA. Predictive value of intraoperative diagnosis of residual ventricular septal defects by transesophageal echocardiography. Ann Thorac Surg. 2010;89:1233–7.

    Article  PubMed  Google Scholar 

  216. Stern KW, White MT, Verghese GR, Del Nido PJ, Geva T. Intraoperative echocardiography for congenital aortic valve repair: predictors of early reoperation. Ann Thorac Surg. 2015;100:678–85.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Redlin M, Miera O, Habazettl H, et al. Incidence and echocardiographic predictors of early postoperative right ventricular dysfunction following left ventricular assist implantation in paediatric patients. Interact Cardiovasc Thorac Surg. 2017;25:887–91.

    Article  PubMed  Google Scholar 

  218. Kaushal SK, Radhakrishanan S, Dagar KS, et al. Significant intraoperative right ventricular outflow gradients after repair for tetralogy of Fallot: to revise or not to revise. Ann Thorac Surg. 1999;68:1705–12.

    Article  PubMed  CAS  Google Scholar 

  219. Yang SG, Novello R, Nicolson S, et al. Evaluation of ventricular septal defect repair using intraoperative transesophageal echocardiography: frequency and significance of residual defects in infants and children. Echocardiography. 2000;17:681–4.

    Article  PubMed  CAS  Google Scholar 

  220. Lee HR, Montenegro LM, Nicolson SC, Gaynor JW, Spray TL, Rychik J. Usefulness of intraoperative transesophageal echocardiography in predicting the degree of mitral regurgitation secondary to atrioventricular defect in children. Am J Cardiol. 1999;83:750–3.

    Article  PubMed  CAS  Google Scholar 

  221. Honjo O, Kotani Y, Osaki S, et al. Discrepancy between intraoperative transesophageal echocardiography and postoperative transthoracic echocardiography in assessing congenital valve surgery. Ann Thorac Surg. 2006;82:2240–6.

    Article  PubMed  Google Scholar 

  222. Shoiab I, Danford DA, Li L, Abdullah I, Hammel JM, Kutty S. Predischarge transthoracic echocardiography after surgery for congenital heart disease: a routine with a reason. J Am Soc Echocardiogr. 2015;28:1030–5.

    Article  PubMed  Google Scholar 

  223. Oh JK, Seward JB, Khandheria BK, et al. Transesophageal echocardiography in critically ill patients. Am J Cardiol. 1990;66:1492–5.

    Article  PubMed  CAS  Google Scholar 

  224. Font VE, Obarski TP, Klein AL, et al. Transesophageal echocardiography in the critical care unit. Cleve Clin J Med. 1991;58:315–22.

    Article  PubMed  CAS  Google Scholar 

  225. Foster E, Schiller NB. The role of transesophageal echocardiography in critical care: UCSF experience. J Am Soc Echocardiogr. 1992;5:368–74.

    Article  PubMed  CAS  Google Scholar 

  226. Khoury AF, Afridi I, Quinones MA, Zoghbi WA. Transesophageal echocardiography in critically ill patients: feasibility, safety, and impact on management. Am Heart J. 1994;127:1363–71.

    Article  PubMed  CAS  Google Scholar 

  227. Poelaert J, Schmidt C, Van Aken H, Colardyn F. Transoesophageal echocardiography in critically ill patients. A comprehensive approach. Eur J Anaesthesiol. 1997;14:350–8.

    Article  PubMed  CAS  Google Scholar 

  228. Hüttemann E, Schelenz C, Kara F, Chatzinikolaou K, Reinhart K. The use and safety of transoesophageal echocardiography in the general ICU—a minireview. Acta Anaesthesiol Scand. 2004;48:827–36.

    Article  PubMed  Google Scholar 

  229. Hüttemann E. Transoesophageal echocardiography in critical care. Minerva Anestesiol. 2006;72:891–913.

    PubMed  Google Scholar 

  230. Ananthasubramaniam K, Jaffery Z. Postoperative right atrial compression by extracardiac hematoma: transesophageal echocardiographic diagnosis in the critically ill patient. Echocardiography. 2007;24:661–3.

    Article  PubMed  Google Scholar 

  231. Arntfield R, Lau V, Landry Y, Priestap F, Ball I. Impact of critical care transesophageal echocardiography in medical-surgical ICU patients: characteristics and results from 274 consecutive examinations. J Intensive Care Med. 2018;35(9):896–902.

    Article  PubMed  Google Scholar 

  232. Wolfe LT, Rossi A, Ritter SB. Transesophageal echocardiography in infants and children: use and importance in the cardiac intensive care unit. J Am Soc Echocardiogr. 1993;6:286–9.

    Article  PubMed  CAS  Google Scholar 

  233. Marcus B, Wong PC, Wells WJ, Lindesmith GG, Starnes VA. Transesophageal echocardiography in the postoperative child with an open sternum. Ann Thorac Surg. 1994;58:235–6.

    Article  PubMed  CAS  Google Scholar 

  234. Scheinin SA, Radovancevic B, Ott DA, Nihill MR, Cabalka A, Frazier OH. Postcardiotomy LVAD support and transesophageal echocardiography in a child. Ann Thorac Surg. 1993;55:529–31.

    Article  PubMed  CAS  Google Scholar 

  235. Kocabas S, Askar FZ, Yagdi T, Engin C, Ozbaran M. Anesthesia for ventricular assist device placement in pediatric patients: experience from a single center. Transplant Proc. 2013;45:1009–12.

    Article  PubMed  CAS  Google Scholar 

  236. Crowley J, Cronin B, Essandoh M, D’Alessandro D, Shelton K, Dalia AA. Transesophageal echocardiography for Impella placement and management. J Cardiothorac Vasc Anesth. 2019;33:2663–8.

    Google Scholar 

  237. Baillard C, Cohen Y, Fosse JP, Karoubi P, Hoang P, Cupa M. Haemodynamic measurements (continuous cardiac output and systemic vascular resistance) in critically ill patients: transoesophageal Doppler versus continuous thermodilution. Anaesth Intensive Care. 1999;27:33–7.

    Article  PubMed  CAS  Google Scholar 

  238. Feinberg MS, Hopkins WE, Davila-Roman VG, Barzilai B. Multiplane transesophageal echocardiographic Doppler imaging accurately determines cardiac output measurements in critically ill patients. Chest. 1995;107:769–73.

    Article  PubMed  CAS  Google Scholar 

  239. Patel JK, Glatz AC, Ghosh RM, et al. Accuracy of transesophageal echocardiography in the identification of postoperative intramural ventricular septal defects. J Thorac Cardiovasc Surg. 2016;152:688–95.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Douglas PS, Khandheria B, Stainback RF, et al. ACCF/ASE/ACEP/ASNC/SCAI/SCCT/SCMR 2007 Appropriateness criteria for transthoracic and transesophageal echocardiography: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American Society of Echocardiography, American College of Emergency Physicians, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and the Society for Cardiovascular Magnetic Resonance endorsed by the American College of Chest Physicians and the Society of Critical Care Medicine. J Am Coll Cardiol. 2007;50:187–204.

    Article  PubMed  Google Scholar 

  241. Douglas PS, Garcia MJ, Haines DE, et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2011;57:1126–66.

    Article  PubMed  Google Scholar 

  242. McGuinness GA, Schieken RM, Maguire GF. Endocarditis in the newborn. Am J Dis Child. 1980;134:577–80.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge Isobel A. Russell, MD for her expertise and contribution to this chapter and co-authorship in the prior edition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanda C. Miller-Hance .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller-Hance, W.C., Vegas, A. (2021). Intraoperative and Postoperative Applications. In: Wong, P.C., Miller-Hance, W.C. (eds) Transesophageal Echocardiography for Pediatric and Congenital Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-57193-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57193-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57192-4

  • Online ISBN: 978-3-030-57193-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics