Skip to main content

Agammaglobulinemia

  • Chapter
  • First Online:
Primary and Secondary Immunodeficiency

Abstract

Agammaglobulinemia is a type of primary B-cell immunodeficiency. According to the European Society for Immunodeficiencies (ESID), the diagnostic criteria for agammaglobulinemia include the onset of recurrent infections before 5 years of age, IgG levels <500 mg/dL and IgA and IgM levels <2 standard deviations of normal levels, and <2% of circulating B cells. The most common form, X-linked agammaglobulinemia (XLA), accounts for approximately 85% of patients with congenital agammaglobulinemia. Approximately half of the remaining patients have mutations encoding components of the pre-B-cell receptor (pre-BCR) or BCR, including μ heavy chain (IGHM); the signal transduction molecules, Igα (CD79A) and Igβ (CD79B); and λ5 (IGLL1), which forms the surrogate light chain with Vpre-B. A small number of patients with defects in B-cell linker protein (BLNK), a scaffold protein that assembles signal transduction molecules activated by cross-linking of the BCR, have been reported. Regardless of the specific diagnosis, all patients with antibody deficiencies are treated with gamma globulin replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El-Sayed ZA, Abramova I, Aldave JC, Al-Herz W, Bezrodnik L, Boukari R, et al. X-linked agammaglobulinemia (XLA): phenotype, diagnosis, and therapeutic challenges around the world. World Allergy Organ J. 2019;12(3):100018. https://doi.org/10.1016/j.waojou.2019.100018.eCollection2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Conley ME, Broides A, Hernandez-Trujillo V, Howards V, Kanegane H, Miyawaki T, et al. Genetic analysis of patients with defects in early B-cell development. Immunol Rev. 2005;203:216.

    Article  CAS  PubMed  Google Scholar 

  3. Conley ME, Dobbs AK, Farmer DM, Kilic S, Paris K, Grigoriadou S, et al. Primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol. 2009;27:199–227.

    Article  CAS  PubMed  Google Scholar 

  4. Gaspar HB, Conley ME. Early B cell defects. Clin Exp Immunol. 2000;119(3):383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Weers M, Brouns GS, Hinshelwood S, Kinnon C, Schuurman RK, Hendriks RW, et al. B-cell antigen receptor stimulation activates the human Bruton’s tyrosine kinase, which is deficient in X-linked agammaglobulinemia. J Biol Chem. 1994;269:23857–60.

    Article  PubMed  Google Scholar 

  6. Aoki Y, Isselbacher KJ, Pillai S. Bruton tyrosine kinase is tyrosine phosphorylated and activated in pre-B lymphocytes and receptor-ligated B cells. Proc Natl Acad Sci U S A. 1994;91:10606–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawakami Y, Yao L, Miura T, Tsukada S, Witte ON, Kawakami T. Tyrosine phosphorylation and activation of Bruton tyrosine kinase upon Fc epsilon RI cross-linking. Mol Cell Biol. 1994;14:5108–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oda A, Ikeda Y, Ochs HD, Druker BJ, Ozaki K, Handa M, et al. Rapid tyrosine phosphorylation and activation of Bruton’s tyrosine/Tec kinases in platelets induced by collagen binding or CD32 cross-linking. Blood. 2000;95:1663–70.

    CAS  PubMed  Google Scholar 

  9. Rawlings DJ, Scharenberg AM, Park H, Wahl MI, Lin S, Kato RM, et al. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science. 1996;271(5250):822–5.

    Article  CAS  PubMed  Google Scholar 

  10. Park H, Wahl MI, Afar DE, Turck CW, Rawlings DJ, Tam C, et al. Regulation of BTK function by a major autophosphorylation site within the SH3 domain. Immunity. 1996;4(5):515–25.

    Article  CAS  PubMed  Google Scholar 

  11. Bu JY, Shaw AS, Chan AC. Analysis of the interaction of ZAP-70 and syk protein tyrosine kinases with the T-cell antigen receptor by plasmon resonance. Proc Natl Acad Sci U S A. 1995;92:5106–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rawlings DJ. Bruton’s tyrosine kinase controls a sustained calcium signal essential for B lineage development and function. Clin Immunol. 1999;91(3):243–53.

    Article  CAS  PubMed  Google Scholar 

  13. Nonoyama S, Tsukada S, Yamadori T, Miyawaki T, Jin YZ, Watanabe C, et al. Functional analysis of peripheral blood B cells in patients with X-linked agammaglobulinemia. J Immunol. 1998;134:3070–4.

    Google Scholar 

  14. Conley ME, Mathias D, Treadaway J, Minegishi Y, Rohrer J. Mutations in BTK in patients with presumed X-linked agammaglobulinemia. Am J Hum Genet. 1998;62(5):1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shillitoe B, Gennery A. X-linked agammaglobulinemia: outcome in the modern era. Clin Immunol. 2017;183:54–62.

    Article  CAS  PubMed  Google Scholar 

  16. Kornfeld SJ, Haire RN, Strong SJ, Tang H, Sung SS, Fu SM, et al. A novel mutation (Cys145-stop) in Bruton’s tyrosine kinase is associated with newly diagnosed X-linked agammaglobulinemia in a 51-year-old male. Mol Med. 1996;2:619–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Conley ME, Howard V. Clinical findings leading to the diagnosis of X-linked agammaglobulinemia. J Pediatr. 2002;141:566–71.

    Article  PubMed  Google Scholar 

  18. Aiuti F, Fontana L, Gatti RA. Membrane-bound immunoglobulin (Ig) and in vitro production of Ig by lymphoid cells from patients with primary immunodeficiencies. Scand J Immunol. 1973;2(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  19. Lougaris V, Massimilliano V, Baronio M, Moratto D, Tampella G, Biasini A, et al. Autosomal recessive agammaglobulinemia: the third case of Igβ deficiency due to a novel non-sense mutation. J Clin Immunol. 2014;34(4):425–7.

    Article  PubMed  Google Scholar 

  20. Wilfert CM, Buckley RH, Mohanakumar T, Griffith JF, Katz SL, Whisnant JK, et al. Persistent and fatal central nervous system ECHOvirus infections in patients with agammaglobulinemia. N Engl J Med. 1977;296:1485–9.

    Article  CAS  PubMed  Google Scholar 

  21. Wyatt HV. Poliomyelitis in hypogammaglobulinemics. J Infect Dis. 1973;128:802–6.

    Article  CAS  PubMed  Google Scholar 

  22. Bardelas JA, Winkelstein JA, Seto DS, Tsai T, Rogol AD. Fatal ECHO 24 infection in a patient with hypogammaglobulinemia: relationship to dermatomyositis-like syndrome. J Pediatr. 1977;90:396–9.

    Article  CAS  PubMed  Google Scholar 

  23. McKinney RE Jr, Katz SL, Wilfert CM. Chronic enteroviral meningoencephalitis in agammaglobulinemic patients. Rev Infect Dis. 1987;9:334–56.

    Article  PubMed  Google Scholar 

  24. Hidalgo S, Garcia EM, Cisterna D, Freire MC. Paralytic poliomyelitis caused by a vaccine derived polio virus in an antibody-deficient Argentinean child. Pediatr Infect Dis J. 2003;22:570–2.

    PubMed  Google Scholar 

  25. Furr PM, Taylor-Robinson D, Webster AD. Mycoplasmas and ureaplasmas in patients with hypogammaglobulinaemia and their role in arthritis: microbiological observations over twenty years. Ann Rheum Dis. 1994;53:183–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. King J, Borte S, Brodszki N, von Dobeln U, Smith CIE, Hammartrom L. Kappa-deleting recombination excision circle levels remain low or undetectable throughout life in patients with X-linked agammaglobulinemia. Pediatr Allergy Immunol. 2018;29(4):453–6.

    Article  PubMed  Google Scholar 

  27. Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-linked agammaglobulinemia report on a United States registry of 201 patients. Medicine. 2006;85(4):193–202.

    Article  PubMed  Google Scholar 

  28. Ramesh M, Simchoni N, Hamm D, Cunningham-Rundles C. High-throughput sequencing reveals an altered T cell repertoire in X-linked agammaglobulinemia. Clin Immunol. 2015;161(2):190–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Howard V, Greene JM, Pahwa S, Winkelstein JA, Boyle JM, Kocak M, et al. The health status and quality of life of adults with X-linked agammaglobulinemia. Clin Immunol. 2006;118(2–3):201–8. Epub 2005 Dec 22.

    Article  CAS  PubMed  Google Scholar 

  30. Quartier P, Debré M, De Blic J, de Sauverzac R, Sayegh N, Jabado N, et al. Early and prolonged intravenous immunoglobulin replacement therapy in childhood agammaglobulinemia: a retrospective survey of 31 patients. J Pediatr. 1999;134:589–96.

    Article  CAS  PubMed  Google Scholar 

  31. Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol. 2002;104:221–30.

    Article  CAS  PubMed  Google Scholar 

  32. Hoffman T, Winchester R, Schulkind M, Frias JL, Ayoub EM, Good RA. Hypoimmunoglobulinemia with normal T cell function in female siblings. Clin Immunol Immunopathol. 1977;7:364–71.

    Article  CAS  PubMed  Google Scholar 

  33. Conley ME, Sweinberg SK. Females with a disorder phenotypically identical to X-linked agammaglobulinemia. J Clin Immunol. 1992;12(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  34. Khalili A, Plebani A, Massimiliano V, Abolhassani H, Lougaris V, Mirminachi B, et al. Autosomal recessive agammaglobulinemia: a novel non-sense mutation in CD79a. J Clin Immunol. 2014;34(2):138–41.

    Article  PubMed  Google Scholar 

  35. Minegishi Y, Coustan-Smith E, Rapalus L, Ersoy F, Campana D, Conley ME. Mutations in Igα (CD79a) result in a complete block in B-cell development. J Clin Invest. 1999;104(8):1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karasuyama H, Rolink A, Shinkai Y, Young F, Alt FW, Melchers F. The expression of Vpre-B/lambda 5 surrogate light chain in early bone marrow precursor B cells of normal and B cell-deficient mutant mice. Cell. 1994;77(1):133–43.

    Article  CAS  PubMed  Google Scholar 

  37. Lassoued K, Illges H, Benlagha K, Cooper MD. Fate of surrogate light chains in B lineage cells. J Exp Med. 1996;183(2):421–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kudo A, Melchers F. A second gene, VpreB in the lambda 5 locus of the mouse, which appears to be selectively expressed in pre-B lymphocytes. EMBO J. 1987;6(8):2267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sakaguchi N, Melchers F. Lambda 5, a new light-chain–related locus selectively expressed in pre–B lymphocytes. Nature. 1986;324(6097):579–82.

    Article  CAS  PubMed  Google Scholar 

  40. Spanopoulou E, Roman CA, Corcoran LM, Schlissel MS, Silver DP, Nemazee D, et al. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1–deficient mice. Genes Dev. 1994;8(9):1030–42.

    Article  CAS  PubMed  Google Scholar 

  41. Young F, Ardman B, Shinkai Y, Lansford R, Blackwell TK, Mendelsohn M, et al. Influence of immunoglobulin heavy- and light-chain expression on B-cell differentiation. Genes Dev. 1994;8(9):1043–57.

    Article  CAS  PubMed  Google Scholar 

  42. Yel L, Minegishi Y, Coustan-Smith E, Buckley RH, Trübel H, Pachman LM, et al. Mutations in the mu heavy chain gene in patients with agammaglobulinemia. N Engl J Med. 1996;335(20):1486–93.

    Article  CAS  PubMed  Google Scholar 

  43. Lopez-Granados E, Porpiglia AS, Hogan MB, Matamoros N, Krasovec S, Pignata C, et al. Clinical and molecular analysis of patients with defects in mu heavy chain gene. J Clin Invest. 2002;110(7):1029–35.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Boisson B, Wang YD, Bosompem A, Ma CS, Lim A, Kochetkov T, et al. A recurrent dominant negative E47 mutation causes agammaglobulinemia and BCR-B cells. J Clin Invest. 2013;123(11):4781–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Valiaho J, Smith CI, Vihinen M. BTKbase: the mutation database for X-linked agammaglobulinemia. Hum Mutat. 2006;27:1209e1217.

    Article  CAS  Google Scholar 

  46. Gemayel KT, Litman GW, Sriaroon P. Autosomal recessive agammaglobulinemia associated with an IGLL1 gene missense mutation. Ann Allergy Asthma Immunol. 2016;117(4):439–41.

    Article  CAS  PubMed  Google Scholar 

  47. Routes J, Abinun M, Al-Herz W, Bustamante J, Condino-Neto A, De La Morena MT, et al. ICON: the early diagnosis of congenital immunodeficiencies. J Clin Immunol. 2014;34:398–424.

    CAS  PubMed  Google Scholar 

  48. LoGalbo PR, Sampson HA, Buckley RH. Symptomatic giardiasis in three patients with X-linked agammaglobulinemia. J Pediatr. 1982;101:78–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Hernandez-Trujillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortega, C., Hernandez-Trujillo, V. (2021). Agammaglobulinemia. In: Bernstein, J.A. (eds) Primary and Secondary Immunodeficiency. Springer, Cham. https://doi.org/10.1007/978-3-030-57157-3_3

Download citation

Publish with us

Policies and ethics