Skip to main content

Bryozoans: The ‘Forgotten’ Bioconstructors

  • Chapter
  • First Online:
Perspectives on the Marine Animal Forests of the World

Abstract

Bryozoan constructions have been present in all major climatic zones of marine ecosystems for the past 450 million years, since the Early Ordovician. Some fossil species possessed large bioconstructional colonies that would have provided habitats for other marine animals and plants, just as similar colonies do at the present day. Today, biogenic calcareous structures vary greatly in size, ranging from a few centimetres to many kilometres, and in complexity, forming composite structures that are distributed globally. Despite the role of bioconstructional bryozoan species in promoting marine biodiversity worldwide, they have been excluded from several protection strategies. Information emerging from the literature provides only a very incomplete picture of the role of bryozoans as bioconstructors at the global level. The ability of bryozoans to form long-lasting carbonate structures makes them important carbonate producers, with a significant role in the carbon cycle. Bryozoan reefs are facing the challenges of climate change, which will be detrimental for some species and their associated biota. Better knowledge of the contribution of bryozoans to the carbon stock and the ecosystem services they provide will be of great importance to ensure their protection and to understand their potential in adaptation strategies under future ocean scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi N, Ezaki Y, Liu J (2012) The oldest bryozoan reefs: a unique early Ordovician skeletal framework construction. Lethaia 45:14–23

    Article  Google Scholar 

  • Amui-Vedel AM, Hayward PJ, Porter JS (2007) Zooid size and growth rate of the bryozoan Cryptosula pallasiana Moll in relation to temperature, in culture and in its natural environment. J Exp Mar Biol Ecol 353:1–12

    Article  Google Scholar 

  • Anderson K, Peters G (2016) The trouble with negative emissions. Science 354:182–183. https://doi.org/10.1126/science.aah4567

    Article  CAS  PubMed  Google Scholar 

  • Bader B (2001a) Bryozoan communities in the Weddell Sea, Antarctica: a first overview. In: Wyse Jackson PN, Buttler CJ, Spencer Jones ME (eds) Bryozoan studies 2001; proceedings of the 12th International Bryozoology Association Conference, Balkema, pp 1–6

    Google Scholar 

  • Bader B (2001b) Modern bryomol-sediments in a cool water, high energy setting: the inner shelf off northern Brittany. Facies 44:81–104

    Article  Google Scholar 

  • Bader B, Schäfer P (2005) Impact of environmental seasonality on stable isotope composition of skeletons of the temperate bryozoan Cellaria sinuosa. Palaeogeogr Palaeoclim Palaeoecol 226:58–71

    Article  Google Scholar 

  • Barnes DKA (2015) Antarctic Sea ice losses drive gains in benthic carbon drawdown. Curr Biol 25(18):789–790. https://doi.org/10.1016/j.cub.2015.07.042

    Article  CAS  Google Scholar 

  • Barnes DKA (2016) Iceberg killing fields limit huge potential for benthic blue carbon in Antarctic shallows. Glob Change Biol 23:2649–2659. https://doi.org/10.1111/gcb.13523

    Article  Google Scholar 

  • Barnes DKA, De Grave S (2002) Temporospatial constraints in resources available to and used by hermit crabs: tests of models. Funct Ecol 16:714–726

    Article  Google Scholar 

  • Barnes DKA, Downey RV (2014) Bryozoa. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz C d’ et al (eds) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 195–199

    Google Scholar 

  • Barton JA, Willis BL, Hutson KS (2017) Coral propagation: a review of techniques for ornamental trade and reef restoration. Rev Aquac 9:238–256. https://doi.org/10.1111/raq.12135

    Article  Google Scholar 

  • Batson PB, Proberts PK (2000) Bryozoan thickets off Otago Peninsula. New Zealand fisheries assessment report 2000/46, 31 p

    Google Scholar 

  • Bijma J, Boekschoten GJ (1985) Recent bryozoan reefs and stromatolite development in brackish inland lakes, SW Netherlands. Senckenberg Marit 17:163–185

    Google Scholar 

  • Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder VA, Hallberg R, Hilmi N, Jiao N, Karim MS, Levin L, O’Donoghue S, Purca Cuicapusa SR, Rinkevich B, Suga T, Tagliabue A, Williamson P (2019) Changing ocean, marine ecosystems, and dependent communities. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds) IPCC special report on the ocean and cryosphere in a changing climate. https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/09_SROCC_Ch05_FINAL-1.pdf

  • Bock PE, Gordon DP (2013) Phylum Bryozoa Ehrenberg, 1831. Zootaxa 3703:67–74

    Article  Google Scholar 

  • Bone Y, Wass RE (1990) Sub-recent bryozoan-serpulid buildups in the Coorong Lagoon, South Australia. Austral J Earth Sci 37:207–214

    Article  Google Scholar 

  • Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso JP, Havenhand J (2018) Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change – a review. Glob Chang Biol 24:2239–2261. https://doi.org/10.1111/gcb.14102

    Article  PubMed  Google Scholar 

  • Bradstock M, Gordon DP (1983) Coral-like bryozoan growths in Tasman Bay, and their protection to conserve commercial fish stocks. N Z J Mar Freshw Res 17:159–116

    Article  Google Scholar 

  • Brey T, Gerdes D (1998) High Antarctic macrobenthic community production. J Exp Mar Biol Ecol 231:191–200. https://doi.org/10.1016/S0022-0981(98)00060-4

    Article  Google Scholar 

  • Cigliano M, Cocito S, Gambi MC (2007) Epibiosis of Calpensia nobilis (Esper) (Bryozoa: Cheilostomida) on Posidonia oceanica (L.) Delile rhizomes: effects on borer colonization and morpho-chronological features of the plant. Aquat Bot 86:30–36

    Article  Google Scholar 

  • Cocito S (2004) Bioconstruction and biodiversity: their mutual influence. Sci Mar 68:137–144

    Article  Google Scholar 

  • Cocito S, Sgorbini S (2013) Long-term trend in substratum occupation by a clonal, carbonate bryozoan in a temperate rocky reef in times of thermal anomalies. Mar Biol 161(1):17–27. https://doi.org/10.1007/s00227-013-2310-9

    Article  Google Scholar 

  • Cocito S, Sgorbini S, Bianchi CN (1998) Aspects of the biology of the bryozoan Pentapora fascialis in the north-western Mediterranean. Mar Biol 131:73–82

    Article  Google Scholar 

  • Cocito S, Ferdeghini F, Morri C, Bianchi CN (2000) Patterns of bioconstruction in the cheilostome bryozoan Schizoporella errata: the influence of hydrodynamics and associated biota. Mar Ecol Progr Ser 192:153–161

    Article  Google Scholar 

  • Cocito S, Sgorbini S, Peirano A, Valle M (2003) 3-D reconstruction of biological objects using underwater video technique and image processing. J Exp Mar Biol Ecol 297:57–70. https://doi.org/10.1016/S0022-0981(03)00369-1

    Article  Google Scholar 

  • Cocito S, Novosel M, Novosel A (2004) Carbonate bioformations around underwater freshwater springs in the north-eastern Adriatic Sea. Facies 50:13–17

    Article  Google Scholar 

  • Cocito S, Lombardi C, Ciuffardi F, Gambi MC (2012) Colonization of Bryozoa on seagrass Posidonia oceanica ‘mimics’: biodiversity and recruitment pattern over time. Mar Biodivers 42:189–201. https://doi.org/10.1007/s12526-011-0104-1

    Article  Google Scholar 

  • Connor DW, Allen JH, Golding N, Howell KL, Lieberknecht LM, Northen KO, Reker JB (2004) The marine habitat classification for Britain and Ireland version 04.05 JNCC, Peterborough, ISBN 1 861 07561 8 (internet version). jncc.defra.gov.uk/MarineHabitatClassification.

  • Costanza R et al (2017) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002

    Article  Google Scholar 

  • Crain CM, Bertness MD (2006) Ecosystem engineering across environmental gradients: implications for conservation and management. Bioscience 56(3):211–218

    Article  Google Scholar 

  • Cranfield J, Rowden A, Smith D, Gordon D, Michael K (2014) Macrofuanal assemblages of benthic habitat of different complexity and the proposition of a model of biogenic reef habitat regeneration in Foveaux Strait, New Zealand. J Sea Res 52:109–125

    Google Scholar 

  • Cuffey RJ, Fonda SS (1976) “Giant” Schizoporella – sedimentologically important cheilostome bryozoans in Pleistocene and recent carbonate environments of Bermuda, the Bahamas, and Florida. Geol Soc Am 8:474–475

    Google Scholar 

  • Cuffey RJ, Fonda SS, Kosich DF, Gebelein CD, Bliefnick DM, Soroka LG (1977) Modern tidal-channel bryozoan reefs at Joulters Cays (Bahamas). In: Proceedings: Third International Coral Reef Symposium. University of Miami, Florida, pp 339–345

    Google Scholar 

  • Cuffey RJ, Chuantao X, Zhu Z, Spjeldnaes N, Zhao-Xun H (2012) The world’s oldest-known bryozoan reefs: late Tremadocian, mid-Early Ordovician; Yichang, Central China. In: Ernst A, Schäfer P, Scholz J (eds) Bryozoan studies 2010. Lecture Notes in Earth System Sciences 143. Springer, Berlin, pp 13–27

    Google Scholar 

  • De Broyer C, Danis B (2011) How many species in the southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-Sea Res Part II 58:5–17. https://doi.org/10.1016/j.dsr2.2010.10.007

    Article  Google Scholar 

  • Díaz S et al (2018) Assessing nature’s contributions to people. Science 359:270

    Article  PubMed  Google Scholar 

  • Duncan H (1957) Bryozoans. Geol Soc Am Mem 67:783–799

    Google Scholar 

  • Ferdeghini F, Cocito S (1999) Biologically generated diversity in two bryozoan buildups. Biol Mar Medit 6:191–197

    Google Scholar 

  • Figuerola B, Gordon DP, Polonio V, Cristobo J, Avila C (2014) Cheilostome bryozoan diversity from the Southwest Atlantic region: is Antarctica really isolated? J Sea Res 85:1–17

    Article  Google Scholar 

  • Flynn AJ, Donnelly D, Fejer AJ, Dutka TL (2019) Western port bryozoan reefs project: report 2 – reef type and extent. Report to La Trobe University, AGL and PP&WP CMA by Fathom Pacific Pty Ltd

    Google Scholar 

  • Gordon DP, Stuart IG, Collen JD (1994) Bryozoan fauna of the Kaipuke Siltstone, northwest Nelson: a Miocene homologue of the modern Tasman Bay coralline bryozoan grounds. N Z J Geol Geophys 37:239–247

    Article  Google Scholar 

  • Grange KR, Tovey A, Hill AF (2003) The spatial extent and nature of the bryozoan communities at Separation Point, Tasman Bay. Marine biodiversity biosecurity report 4. Ministry of Fisheries, Wellington

    Google Scholar 

  • Grischenko AB, Ivanjushina EA (2002) Hermatypic Bryozoa of the shelf zone of the Commander Islands. In: Conservation of biodiversity of Kamchatka and coastal waters. Materials of III scientific conference. Petropavlovsk-Kamchatsky, pp 32–35

    Google Scholar 

  • Gutt J, Starmans A (1998) Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Polar Biol 20:229–247

    Article  Google Scholar 

  • Hageman SJ, Bock PE, Bone Y, McGowran B (1998) Bryozoan growth habits: classification and analysis. J Paleontol 72:418–436

    Article  Google Scholar 

  • Harmelin J-G (1985) Bryozoan dominated assemblages in Mediterranean cryptic environments. In: Nielsen C, Larwood GP (eds) Bryozoa: Ordovician to Recent. Olsen and Olsen, Fredensborg

    Google Scholar 

  • Harmelin J-G (1997) Diversity of bryozoans in a Mediterranean sublittoral cave with bathyal-like conditions: role of dispersal processes and local factors. Mar Ecol Progr Ser 153:139–152

    Article  Google Scholar 

  • Harmelin J-G (2000) Ecology of cave and cavity dwelling bryozoans. In: Herrera CA, Jackson JBC (eds) Proceedings of the 11th International Bryozoology Association Conference. Smithsonian Tropical Research Institute, Panama, pp 38–55

    Google Scholar 

  • Harmelin J-G, Capo S (2001) Effects of sewage on bryozoan diversity in Mediterranean rocky bottoms. In: Wyse Jackson PN, Buttler CJ, Spencer Jones ME (eds) Bryozoan Studies 2001, A.A. Balkema, pp 151–157

    Google Scholar 

  • Hayward PJ, Ryland JS (1999) Cheilostomatous Bryozoa, part 2: Hippothooidea–Celleporoidea. In: Barnes RSK, Crothers JH (eds) Synopses of the British Fauna (new series). Field Studies Council, Shrewsbury

    Google Scholar 

  • Hiscock K (2014) Marine biodiversity conservation, a practical approach. Earthscan from Routledge (Taylor and Francis Group), London and New York, 298 pp

    Google Scholar 

  • Hoffmeister JE, Stockmann KW, Multer HG (1967) Miami Limestone of Florida and its recent Bahamian counterpart. Geol Soc Am Bull 78:175–190

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • Knowles T, Leng MJ, Williams M, Taylor PD, Okamura B (2010) Interpreting seawater temperature range using oxygen isotopes and zooid size variation in Pentapora foliacea (Bryozoa). Mar Biol 157:1171–1180

    Article  CAS  Google Scholar 

  • Leadley P et al (2014) Interacting regional-scale regime shifts for biodiversity and ecosystem services. Bioscience 64:665–679. https://doi.org/10.1093/biosci/biu093

    Article  Google Scholar 

  • Lombardi C, Cocito S, Occhipinti Ambrogi A, Hiscock K (2006) The influence of seawater temperature on zooid size and growth rate in Pentapora fascialis (Bryozoa: Cheilostomata). Mar Biol 149:1103–1109. https://doi.org/10.1007/s00227-006-0295-3

    Article  Google Scholar 

  • Lombardi C, Cocito S, Occhipinti-Ambrogi A, Porter JS (2008) Distribution and morphological variation of colonies of the bryozoan Pentapora fascialis (Bryozoa: Cheilostomata) along the western coast of Italy. J Mar Biol Ass UK 88:711–717

    Article  Google Scholar 

  • Lombardi C, Rodolfo-Metalpa R, Cocito S, Gambi MC, Taylor PD (2010) Structural and geochemical alterations in the Mg calcite bryozoan Myriapora truncata under elevated seawater pCO2 simulating ocean acidification. Mar Ecol 32(2):211–221. https://doi.org/10.1111/j.1439-0485.2010.00426.x

    Article  Google Scholar 

  • Lombardi C, Cocito S, Gambi MC, Cisterna B, Flach F, Taylor PD, Keltie K, Freer A, Cusack M (2011a) Effects of ocean acidification on growth, organic tissue and protein profile of the Mediterranean bryozoan Myriapora truncata. Aquat Biol 13:251–262. https://doi.org/10.3354/ab00376

    Article  Google Scholar 

  • Lombardi C, Gambi MC, Vasapollo C, Taylor PD, Cocito S (2011b) Skeletal alterations and polymorphism in a Mediterranean bryozoan at natural CO2 vents. Zoomorphology 130:135–145

    Google Scholar 

  • Lombardi C, Cocito S, Taylor PD (2013) Bryozoan bioconstructions in a changing Mediterranean Sea. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea – its history and present challenges. Springer, New York, pp 373–384

    Google Scholar 

  • Lombardi C, Cocito S, Gambi MC, Taylor PD (2015) Morphological plasticity in a calcifying modular organism: evidence from an in situ transplant experiment in a natural CO2 vent system. R Soc Open Sci 2:140413. https://doi.org/10.1098/rsos

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J-Y, Taylor PD, Feng-Sheng X (2014) New observations on the skeletons of the earliest bryozoans from the Fenhsiang Formation (Tremadocian, lower Ordovician), Yichang, China. Palaeoworld 23:25–30

    Google Scholar 

  • Maluquer P (1985) Algunas consideraciones sobre la fauna asociada a las colonias de Schizoporella errata (Waters, 1878) del puerto de Mahón (Menorca, Baleares). Publ Dept Zool Univ Barcelona 11:23–28

    Google Scholar 

  • McKinney FK, Jackson JBC (1989) Bryozoan Evolution. Chicago University Press, Chicago

    Google Scholar 

  • McKinney FK, Jaklin A (2000) Spatial niche partitioning in the Cellaria meadow epibiont association, northern Adriatic Sea. Cah Biol Mar 41:1–17

    Google Scholar 

  • Meredith M, Sommerkorn M, Cassotta S, Derksen C, Ekaykin A, Hollowed A, Kofinas G, Mackintosh A, Melbourne-Thomas J, Muelbert MMC, Ottersen G, Pritchard H, Schuur EAG (2019) Polar regions. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds) IPCC special report on the ocean and cryosphere in a changing climate. https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/07_SROCC_Ch03_FINAL.pdf

  • Morgado EH, Tanaka MO (2001) The macrofauna associated with the bryozoan Schizoporella errata (Walters) in southeastern Brazil. Sci Mar 65:173–181

    Article  Google Scholar 

  • Myhre G et al (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 659–740

    Google Scholar 

  • Narayan S et al (2016) The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS One 11:e0154735. https://doi.org/10.1371/journal.pone.0154735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novosel M (2005) Bryozoans of the Adriatic Sea. Denisia 16. Landesmuseen Neue Serie 28:231–246

    Google Scholar 

  • Orr JC et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. https://doi.org/10.1038/nature04095

    Article  CAS  PubMed  Google Scholar 

  • Pabis K, Hara U, Presler P, Sicinski J (2014) Structure of bryozoan communities in an Antarctic glacial fjord (Admiralty Bay, South Shetlands). Polar Biol 37:737–751. https://doi.org/10.1007/s00300-014-1474-1

    Article  Google Scholar 

  • Pagès-Escolà M, Hereu B, Garrabou J, Montero-Serra I, Gori A, Gómez-Gras D, Figuerola B, Linares C (2018) Divergent responses to warming between two common co-occurrent Mediterranean bryozoans. Sci Rep 8:17455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parker SJ, Bowden DA (2010) Identifying taxonomic groups vulnerable to bottom longline fishing gear in the Ross Sea region. CCAMLR Sci 17:105–127

    Google Scholar 

  • Patzold J, Ristedt H, Wefer G (1987) Rate of growth and longevity of a large colony of Pentapora foliacea (Bryozoa) recorded in their oxygen isotopes profiles. Mar Biol 96:535–538

    Article  Google Scholar 

  • Poluzzi A, Coppa MG (1991) Zoarial strategies to win substratum space in Calpensia nobilis (Esper). Bull Soc Sci Nat Ouest Fr, Mém H.S. 1:337-360

    Google Scholar 

  • Probert PK, Batham EJ, Wilson JB (1979) Epibenthic macrofauna off southeastern New Zealand and mid-shelf bryozoan dominance. N Z J Mar Freshw Res 13:379–392

    Article  Google Scholar 

  • Riebesell U, Gattuso J-P (2015) Lessons learned from ocean acidification research. Nat Clim Chang 5:12–14. https://doi.org/10.1038/nclimate2456

    Article  CAS  Google Scholar 

  • Rinkevich B (2000) Steps towards the evaluation of coral reef restoration by using small branch fragments. Mar Biol 136(5):807–812. https://doi.org/10.1007/s002270000293

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Lombardi C, Cocito S, Hall-Spencer J, Gambi MC (2010) Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents. Mar Ecol 31:447–456

    CAS  Google Scholar 

  • Rosso A (1992) Bryozoa from Terra Nova Bay (Ross Sea, Antarctica). In: Gallardo VA, Ferretti O, Moyano HI (eds) Oceanografia in Antartide. Universidad de Concepcion, Chile, Centro Eula, pp 359–369

    Google Scholar 

  • Rosso A (1994) Bryozoa of the first Italian Antarctic oceanographic expedition (Terra Nova Bay, Ross Sea). I. Flustridae Smitt, 1867. J Nat Hist 28:695–713. https://doi.org/10.1080/00222939400770321

    Article  Google Scholar 

  • Rosso A (2003) Bryozoan diversity in the Mediterranean Sea. Biogeographia 24:227–250

    Google Scholar 

  • Rosso A, Di Martino E (2016) Bryozoan diversity in the Mediterranean Sea: an update. Medit Mar Sci 17:567–607

    Article  Google Scholar 

  • Rosso A, Sanfilippo R (2000) Shallow-water bryozoans and serpuloideans from the Ross Sea (Terra Nova Bay, Antarctica). In: Faranda FM, Guglielmo L, Ianora A (eds) Ross Sea ecology. Springer, New York, pp 515–525. https://doi.org/10.1007/978-3-642-59607-0_37

    Chapter  Google Scholar 

  • Rosso A, Vertino A, Di Geronimo I, Sanfilippo R, Sciuto F, Di Geronimo R, Violanti D, Corselli C, Taviani M, Mastrotaro F, Tursi A (2010) Hard and soft-bottom thanatofacies from Santa Maria di leuca deep-water coral province, Mediterranean. Deep Sea Res Part II: Trop Stud Oceanogr 57:360–379

    Article  Google Scholar 

  • Rosso A, Sanfilippo R, Taddei Ruggiero E, Di Martino E (2013) Faunas and ecological groups of Serpuloidea, Bryozoa and Brachiopoda from submarine caves in Sicily (Mediterranean Sea). Boll Soc Paleo Ital 52:167–176

    Google Scholar 

  • Ryland JS (1970) Bryozoans. Hutchinson University Library, London

    Google Scholar 

  • Ryland J (1977) Physiology and ecology of marine bryozoans. Adv Mar Biol 14:285–443. https://doi.org/10.1016/S0065-2881(08)60449-6

    Article  Google Scholar 

  • Santagata S, Ade V, Mahon AR, Wisocki PA, Halanych KM (2018) Compositional differences in the habitat-forming bryozoan communities of the Antarctic shelf. Front Ecol Evol 6:116. https://doi.org/10.3389/fevo.2018.00116

    Article  Google Scholar 

  • Saxton F (1980) Coral loss could deplete fish stocks. Catch 15–16

    Google Scholar 

  • Secretariat of the Convention on Biological Diversity (2010). Year in Review 2009. Montreal, 42 pages. https://www.cbd.int/doc/reports/cbd-report-2009-en.pdf

    Google Scholar 

  • Smith AM, Stewart B, Key MM Jr, Jamet CM (2001) Growth and carbonate production by Adeonellopsis (Bryozoa: Cheilostomata) in Doubtful Sound, New Zealand. Palaeogeogr Palaeoclim Palaeoecol 175:201–210

    Google Scholar 

  • Soliveres et al (2016) Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536:456–459. https://doi.org/10.1038/nature19092

    Article  CAS  PubMed  Google Scholar 

  • Tallis H et al (2010) The many faces of ecosystem-based management: making the process work today in real places. Mar Policy 34(2):340–348

    Article  Google Scholar 

  • Taylor PD (2000) Origin of the modern bryozoan fauna. In: Culver SJ, Rawson PF (eds) Biotic response to global change. The last 145 million years. Cambridge University Press, Cambridge

    Google Scholar 

  • Taylor PD (2005) Bryozoans and palaeoenvironmental interpretation. J Palaeontol Soc India 50(2):1-11

    Google Scholar 

  • Taylor PD (2020) Bryozoan palaeobiology. Wiley Blackwell, Oxford, 320 pp

    Google Scholar 

  • Taylor PD, Allison PA (1998) Bryozoan carbonates in space and time. Geology 26:459–462

    Article  CAS  Google Scholar 

  • Taylor PD, Ernst A (2004) Bryozoans. In: Webby BD, Paris F, Droser ML, Percival IG (eds) The Great Ordovician Biodiversification Event. Columbia University Press, New York, pp 147–156

    Google Scholar 

  • Taylor PD, Gordon DP (2003) Endemic new cyclostome bryozoans from Spirits Bay, a New Zealand marine-biodiversity “hotspot”. N Z J Mar Freshw Res 37:653–669

    Article  Google Scholar 

  • Taylor PD, James NP (2013) Secular changes in colony-forms and bryozoan carbonate sediments through geological time. Sedimentology 60:1184–1212

    Article  Google Scholar 

  • Taylor PD, James NP, Bone Y, Kuklinski P, Kyser TK (2009) Evolving mineralogy of cheilostome bryozoans. Palaios 24:440–452

    Google Scholar 

  • Taylor PD, Lombardi C, Cocito S (2015) Biomineralization in bryozoans: present, past and future. Biol Rev 90(4):1118–1150. https://doi.org/10.1111/brv.12148

    Article  PubMed  Google Scholar 

  • Taylor PD, Tan S-HA, Kudryavstev AB, Schopf JW (2016) Carbonate mineralogy of a tropical bryozoan biota and its vulnerability to ocean acidification. Mar Biol Res 12:776. https://doi.org/10.1080/17451000.2016.1203951

    Article  Google Scholar 

  • The Natural Environment White Paper (2011) The natural choice: securing the value of nature. Department for Environment, Food and Rural Affairs. https://www.gov.uk/government/publications/natural-environment-white-paper-implementation-updates

  • UNEP (2017) The emissions gap report 2017. United Nations Environment Programme (UNEP), Nairobi

    Google Scholar 

  • United Nation Sustainable Development Summit (2015). https://sustainabledevelopment.un.org/post2015/summit

  • Winston JE (1983) Patterns of growth, reproduction and mortality in bryozoans from the Ross Sea, Antarctica. Bull Mar Sci 33:688–702

    Google Scholar 

  • Wong PP et al (2014) Coastal systems and low-lying areas. Climate Change 2104:361–409

    Google Scholar 

  • Wood ACL (2005) Communities associated with habitat-forming bryozoans from Otago shelf, Southern New Zealand. Master of Science thesis, University of Otago, New Zealand

    Google Scholar 

  • Wood ACL, Probert PK, Rowden AA, Smith AM (2012) Complex habitat generated by marine bryozoans: a review of its distribution, structure, diversity, threats and conservation. Aquat Conserv: Mar Fresh Ecosyst 22:547–563

    Article  Google Scholar 

  • Zabala M (1986) Fauna dels Briozous dels Països Catalans. Institut d’Estudis Catalans, Arxius de la Secció de Ciéncies, Barcelona 84:1–836

    Google Scholar 

  • Zabin CJ, Obernolte R, Mackie JA, Gentry J, Harris L, Geller J (2010) A non-native bryozoan creates novel substrate on the mudflats in San Francisco Bay. Mar Ecol Prog Ser 412:129–139. https://doi.org/10.3354/meps08664

    Article  Google Scholar 

  • Zimmerman LS, Cuffey RJ (1987) Species involved on Permian bryozoan bioherms, West Texas. In: Ross JRP (ed) Bryozoa: present and past. Western Washington University, Bellingham, pp 309–316

    Google Scholar 

Download references

Acknowledgements

C.L. acknowledges S. Canese (ISPRA, Italy) and R O’Driscoll (National Institute of Water and Atmospheric Research (NIWA), New Zealand) who generously provided Fig. 1c (Project ‘Osservatorio Biodiversità Regione Sicilia’) and Fig. 1d (Projects: The Ross Sea Environment and Ecosystem Voyage—funded by New Zealand’s Ministry for Business, Innovation and Employment—and Ross-RAMP research programme (NIWA)). All authors acknowledge the Italian National Project for Antarctic Research (PNRA_00069_Graceful) for supporting part of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cocito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lombardi, C., Taylor, P.D., Cocito, S. (2020). Bryozoans: The ‘Forgotten’ Bioconstructors. In: Rossi, S., Bramanti, L. (eds) Perspectives on the Marine Animal Forests of the World. Springer, Cham. https://doi.org/10.1007/978-3-030-57054-5_7

Download citation

Publish with us

Policies and ethics