Skip to main content

Bone Marrow-Derived Cells: From the Laboratory to the Clinic

  • Chapter
  • First Online:
Stem Cell Therapy for Vascular Diseases

Abstract

Bone marrow mononuclear cells (BMMNC) are enriched with a variety of angiogenic stem and progenitor cells, as well as mature hematopoietic cells that function synergistically to promote neovascularization. Delivery of BMMNC or its subpopulations have demonstrated marked effects on revascularization of ischemic tissue in preclinical models. Extensive phase I and II clinical trials in critical limb ischemia (CLI) patients have established the safety of BMMNC and showed promising effects of the cells to improve ischemic rest pain and promote ulcer healing, pain-free walking distance, ABI, and TcPO2. This book chapter introduces the concept of BMMNC and its subpopulations in the context of peripheral arterial disease. It also discusses the animal models of CLI in which mechanisms of bone marrow-derived cells were investigated. Finally, the progress in the clinical trials using BMMNC to treat CLI patients were summarized, and the challenges were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asahara T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  CAS  PubMed  Google Scholar 

  2. Kamihata H, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 2001;104:1046–52.

    Article  CAS  PubMed  Google Scholar 

  3. Gehling UM, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood. 2000;95:3106–12.

    Article  CAS  PubMed  Google Scholar 

  4. Hill JM, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348:593–600.

    Article  PubMed  Google Scholar 

  5. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107:1164–9.

    Article  PubMed  Google Scholar 

  6. Sharpe EE 3rd, et al. The origin and in vivo significance of murine and human culture-expanded endothelial progenitor cells. Am J Pathol. 2006;168:1710–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gulati R, et al. Autologous culture-modified mononuclear cells confer vascular protection after arterial injury. Circulation. 2003;108:1520–6.

    Article  PubMed  Google Scholar 

  8. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000;105:71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bompais H, et al. Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood. 2004;103:2577–84.

    Article  CAS  PubMed  Google Scholar 

  10. Lin Y, et al. Use of blood outgrowth endothelial cells for gene therapy for hemophilia A. Blood. 2002;99:457–62.

    Article  CAS  PubMed  Google Scholar 

  11. Romagnani P, et al. CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res. 2005;97:314–22.

    Article  CAS  PubMed  Google Scholar 

  12. Ingram DA, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104:2752–60.

    Article  CAS  PubMed  Google Scholar 

  13. Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res. 2012;110:624–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2012;2:a006692.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yoder MC. Endothelial progenitor cell: a blood cell by many other names may serve similar functions. J Mol Med (Berl). 2013;91:285–95.

    Article  Google Scholar 

  16. Labrecque J, Bhat PV, Lacroix A. Purification and partial characterization of a rat kidney aldehyde dehydrogenase that oxidizes retinal to retinoic acid. Biochem Cell Biol (Biochimie et biologie cellulaire). 1993;71:85–9.

    Article  CAS  Google Scholar 

  17. Gordon MY, Goldman JM, Gordon-Smith EC. 4-Hydroperoxycyclophosphamide inhibits proliferation by human granulocyte-macrophage colony-forming cells (GM-CFC) but spares more primitive progenitor cells. Leuk Res. 1985;9:1017–21.

    Article  CAS  PubMed  Google Scholar 

  18. Sahovic EA, Colvin M, Hilton J, Ogawa M. Role for aldehyde dehydrogenase in survival of progenitors for murine blast cell colonies after treatment with 4-hydroperoxycyclophosphamide in vitro. Cancer Res. 1988;48:1223–6.

    CAS  PubMed  Google Scholar 

  19. Smith C, et al. Purification and partial characterization of a human hematopoietic precursor population. Blood. 1991;77:2122–8.

    Article  CAS  PubMed  Google Scholar 

  20. Storms RW, et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A. 1999;96:9118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Capoccia BJ, et al. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood. 2009;113:5340–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  23. Thirumala S, Goebel WS, Woods EJ. Manufacturing and banking of mesenchymal stem cells. Expert Opin Biol Ther. 2013;13:673–91.

    Article  CAS  PubMed  Google Scholar 

  24. Tateishi-Yuyama E, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427–35.

    Article  PubMed  Google Scholar 

  25. Walter DH, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv. 2011;4:26–37.

    Article  PubMed  Google Scholar 

  26. Boyum A. Separation of lymphocytes, lymphocyte subgroups and monocytes: a review. Lymphology. 1977;10:71–6.

    CAS  PubMed  Google Scholar 

  27. Boyum A, Brincker Fjerdingstad H, Martinsen I, Lea T, Lovhaug D. Separation of human lymphocytes from citrated blood by density gradient (NycoPrep) centrifugation: monocyte depletion depending upon activation of membrane potassium channels. Scand J Immunol. 2002;56:76–84.

    Article  CAS  PubMed  Google Scholar 

  28. Assmus B, et al. Red blood cell contamination of the final cell product impairs the efficacy of autologous bone marrow mononuclear cell therapy. J Am Coll Cardiol. 2010;55:1385–94.

    Article  PubMed  Google Scholar 

  29. Prochazka V, et al. Autologous bone marrow stem cell transplantation in patients with end-stage chronical critical limb ischemia and diabetic foot. Vnitrni lekarstvi. 2009;55:173–8. https://pubmed.ncbi.nlm.nih.gov/19378841/.

    Google Scholar 

  30. Amann B, Luedemann C, Ratei R, Schmidt-Lucke JA. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant. 2009;18:371–80.

    Article  PubMed  Google Scholar 

  31. Hermann PC, et al. Concentration of bone marrow total nucleated cells by a point-of-care device provides a high yield and preserves their functional activity. Cell Transplant. 2008;16:1059–69.

    Article  PubMed  Google Scholar 

  32. Burkhardt GE, et al. A large animal survival model (Sus scrofa) of extremity ischemia/reperfusion and neuromuscular outcomes assessment: a pilot study. J Trauma. 2010;69(Suppl 1):S146–53.

    PubMed  Google Scholar 

  33. Nakada MT, et al. Clot lysis in a primate model of peripheral arterial occlusive disease with use of systemic or intraarterial reteplase: addition of abciximab results in improved vessel reperfusion. J Vascu Intervent Radiol. 2004;15:169–76.

    Article  Google Scholar 

  34. Arras M, et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest. 1998;101:40–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosenthal SL, Guyton AC. Hemodynamics of collateral vasodilatation following femoral artery occlusion in anesthetized dogs. Circ Res. 1968;23:239–48.

    Article  CAS  PubMed  Google Scholar 

  36. Madeddu P, et al. Murine models of myocardial and limb ischemia: diagnostic end-points and relevance to clinical problems. Vasc Pharmacol. 2006;45:281–301.

    Article  CAS  Google Scholar 

  37. Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb Haemost. 2010;103:696–709.

    Article  CAS  PubMed  Google Scholar 

  38. Lotfi S, et al. Towards a more relevant hind limb model of muscle ischaemia. Atherosclerosis. 2013;227:1–8.

    Article  CAS  PubMed  Google Scholar 

  39. Kinnaird T, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109:1543–9.

    Article  CAS  PubMed  Google Scholar 

  40. Helisch A, et al. Impact of mouse strain differences in innate hindlimb collateral vasculature. Arterioscler Thromb Vasc Biol. 2006;26:520–6.

    Article  CAS  PubMed  Google Scholar 

  41. Dokun AO, et al. A quantitative trait locus (LSq-1) on mouse chromosome 7 is linked to the absence of tissue loss after surgical hindlimb ischemia. Circulation. 2008;117:1207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Becit N, et al. The effect of vascular endothelial growth factor on angiogenesis: an experimental study. Eur J Vasc Endovasc Surg. 2001;22:310–6.

    Article  CAS  PubMed  Google Scholar 

  43. Mac Gabhann F, Qutub AA, Annex BH, Popel AS. Systems biology of pro-angiogenic therapies targeting the VEGF system. Wiley Interdiscip Rev Syst Biol Med. 2010;2:694–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Belch J, et al. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet. 2011;377:1929–37.

    Article  CAS  PubMed  Google Scholar 

  45. Shigematsu H, et al. Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther. 2010;17:1152–61.

    Article  CAS  PubMed  Google Scholar 

  46. Asahara T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85:221–8.

    Article  CAS  PubMed  Google Scholar 

  47. Takahashi T, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5:434–8.

    Article  CAS  PubMed  Google Scholar 

  48. Santarelli JG, et al. Incorporation of bone marrow-derived Flk-1-expressing CD34+ cells in the endothelium of tumor vessels in the mouse brain. Neurosurgery. 2006;59:374–82; discussion 374–82.

    Article  PubMed  Google Scholar 

  49. Ribatti D, Nico B, Crivellato E. The role of pericytes in angiogenesis. Int J Dev Biol. 2011;55:261–8.

    Article  CAS  PubMed  Google Scholar 

  50. Hall AP. Review of the pericyte during angiogenesis and its role in cancer and diabetic retinopathy. Toxicol Pathol. 2006;34:763–75.

    Article  CAS  PubMed  Google Scholar 

  51. Rajantie I, et al. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood. 2004;104:2084–6.

    Article  CAS  PubMed  Google Scholar 

  52. Ziegelhoeffer T, et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res. 2004;94:230–8.

    Article  CAS  PubMed  Google Scholar 

  53. Ozerdem U, Alitalo K, Salven P, Li A. Contribution of bone marrow-derived pericyte precursor cells to corneal vasculogenesis. Invest Ophthalmol Vis Sci. 2005;46:3502–6.

    Article  PubMed  Google Scholar 

  54. Fuchs S, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol. 2001;37:1726–32.

    Article  CAS  PubMed  Google Scholar 

  55. Jackson KA, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001;107:1395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stabile E, et al. Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation. 2003;108:205–10.

    Article  PubMed  Google Scholar 

  57. Mohle R, Green D, Moore MA, Nachman RL, Rafii S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci U S A. 1997;94:663–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Blotnick S, Peoples GE, Freeman MR, Eberlein TJ, Klagsbrun M. T lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: differential production and release by CD4+ and CD8+ T cells. Proc Natl Acad Sci U S A. 1994;91:2890–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Melter M, et al. Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood. 2000;96:3801–8.

    Article  CAS  PubMed  Google Scholar 

  60. Kinnaird T, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94:678–85.

    Article  CAS  PubMed  Google Scholar 

  61. Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013;13:392–402.

    Article  CAS  PubMed  Google Scholar 

  62. Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Therap. 2012;20:14–20.

    Article  CAS  Google Scholar 

  63. Timmermans F, De Sutter J, Gillebert TC. Stem cells for the heart, are we there yet? Cardiology. 2003;100:176–85.

    Article  CAS  PubMed  Google Scholar 

  64. Kinnaird T, Stabile E, Burnett MS, Epstein SE. Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res. 2004;95:354–63.

    Article  CAS  PubMed  Google Scholar 

  65. Murphy MP, et al. Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia. J Vasc Surg. 2011;53:1565–1574 e1561.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Franz RW, et al. Use of autologous bone marrow mononuclear cell implantation therapy as a limb salvage procedure in patients with severe peripheral arterial disease. J Vasc Surg. 2009;50:1378–90.

    Article  PubMed  Google Scholar 

  67. Benoit E, et al. The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design. J Transl Med. 2011;9:165.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Teraa M, et al. Autologous bone marrow-derived cell therapy in patients with critical limb ischemia: a meta-analysis of randomized controlled clinical trials. Ann Surg. 2013;258:922–9.

    Article  PubMed  Google Scholar 

  69. Matoba S, et al. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (therapeutic angiogenesis by cell transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J. 2008;156:1010–8.

    Article  PubMed  Google Scholar 

  70. Norgren L, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45(Suppl S):S5–67.

    Article  PubMed  Google Scholar 

  71. Klinkert P, van Dijk PJ, Breslau PJ. Polytetrafluoroethylene femorotibial bypass grafting: 5-year patency and limb salvage. Ann Vasc Surg. 2003;17:486–91.

    Article  CAS  PubMed  Google Scholar 

  72. Wen Y, Meng L, Gao Q. Autologous bone marrow cell therapy for patients with peripheral arterial disease: a meta-analysis of randomized controlled trials. Expert Opin Biol Ther. 2011;11:1581–9.

    Article  PubMed  Google Scholar 

  73. Huang P, et al. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28:2155–60.

    Article  PubMed  Google Scholar 

  74. Ozturk A, et al. Therapeutical potential of autologous peripheral blood mononuclear cell transplantation in patients with type 2 diabetic critical limb ischemia. J Diabetes Complicat. 2012;26:29–33.

    Article  Google Scholar 

  75. Mohammadzadeh L, et al. Therapeutic outcomes of transplanting autologous granulocyte colony-stimulating factor-mobilised peripheral mononuclear cells in diabetic patients with critical limb ischaemia. Exp Clin Endocrinol Diab. 2013;121:48–53.

    Article  CAS  Google Scholar 

  76. Lu D, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92:26–36.

    Article  PubMed  Google Scholar 

  77. Gupta PK, et al. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J Transl Med. 2013;11:143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fujita Y, et al. Phase II clinical trial of CD34+ cell therapy to explore endpoint selection and timing in patients with critical limb ischemia. Circ J. 2014;78:490–501.

    Article  CAS  PubMed  Google Scholar 

  79. Losordo DW, et al. A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ Cardiovasc Interv. 2012;5:821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Perin EC, et al. A randomized, controlled study of autologous therapy with bone marrow-derived aldehyde dehydrogenase bright cells in patients with critical limb ischemia. Catheteriz Cardiovasc Intervent. 2011;78:1060–7.

    Article  Google Scholar 

  81. Powell RJ, et al. Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Therap. 2012;20:1280–6.

    Article  CAS  Google Scholar 

  82. Arai M, Misao Y, Nagai H, Kawasaki M, Nagashima K, Suzuki K, Tsuchiya K, Otsuka S, Uno Y, Takemura G, Nishigaki K, Minatoguchi S, Fujiwara H. Granulocyte colony-stimulating factor: a noninvasive regeneration therapy for treating atherosclerotic peripheral artery disease. Circ J. 2006;70:1093–8. https://pubmed.ncbi.nlm.nih.gov/16936417/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

King, J.R., Xie, J., Murphy, M.P. (2021). Bone Marrow-Derived Cells: From the Laboratory to the Clinic. In: Navarro, T.P., Minchillo Lopes, L.L.N., Dardik, A. (eds) Stem Cell Therapy for Vascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-56954-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56954-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56953-2

  • Online ISBN: 978-3-030-56954-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics