Skip to main content

Introduction: An Overview of Host-Directed Therapies for Tuberculosis

  • Chapter
  • First Online:
Advances in Host-Directed Therapies Against Tuberculosis
  • 585 Accesses

Abstract

Interest in host directed therapy (HDT) for the treatment of tuberculosis (TB) has emerged in recent years as antibiotics have failed to eradicate this disease. Lengthy treatment regimens coupled with the development of drug resistant Mycobacterium tuberculosis (Mtb), and a lack of profit incentives for pharmaceutical companies to develop novel anti-mycobacterial compounds has left a void in treatment options which some hope HDT strives to fill. Safe and well tolerated drugs that modulate the host immune system to fight infection may be repurposed from their original indication to help combat TB. These agents may be used in combination with standard antibiotics, as adjunctive therapy, to shorten treatment, prevent tissue damage, and prevent disease recurrence. Here we provide a general overview of the landscape of various HDTs currently in development for TB treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Tuberculosis: WHO fact sheet no. 104. Available at: https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis

  2. A Medical Research Council Investigation (1950) TREATMENT of pulmonary tuberculosis with streptomycin and para-aminosalicylic acid; a Medical Research Council investigation. Br Med J 2:1073–1085

    Article  Google Scholar 

  3. Wallis RS, Hafner R (2015) Advancing host-directed therapy for tuberculosis. Nat Rev Immunol 15:255–263

    Article  CAS  PubMed  Google Scholar 

  4. Kaufmann SHE, Dorhoi A, Hotchkiss RS, Bartenschlager R (2018) Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discov 17:35–56

    Article  CAS  PubMed  Google Scholar 

  5. Mahon RN, Hafner R (2015) Immune cell regulatory pathways unexplored as host-directed therapeutic targets for Mycobacterium tuberculosis: an opportunity to apply precision medicine innovations to infectious diseases. Clin Infect Dis 61(Suppl 3):S200–S216

    Article  CAS  PubMed Central  Google Scholar 

  6. Frank DJ, Horne DJ, Dutta NK et al (2019) Remembering the host in tuberculosis drug development. J Infect Dis 219:1518–1524

    Article  CAS  PubMed  Google Scholar 

  7. McCarthy OR (2001) The key to the sanatoria. J R Soc Med 94:413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alling DW, Bosworth EB (1960) The after-history of pulmonary tuberculosis. VI. The first fifteen years following diagnosis. Am Rev Respir Dis 81:839–849

    CAS  PubMed  Google Scholar 

  9. Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJ (2011) Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PLoS One 6:e17601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murray JF, Schraufnagel DE, Hopewell PC (2015) Treatment of tuberculosis. A historical perspective. Ann Am Thorac Soc 12:1749–1759

    Article  PubMed  Google Scholar 

  11. Murray JF (2003) Bill Dock and the location of pulmonary tuberculosis: how bed rest might have helped consumption. Am J Respir Crit Care Med 168:1029–1033

    Article  PubMed  Google Scholar 

  12. World Health Organization (2006) Extensively drug-resistant tuberculosis (XDR-TB): recommendations for prevention and control. Releve epidemiologique hebdomadaire 81:430–432

    Google Scholar 

  13. Centers for Disease Control and Prevention (2006) Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs--worldwide, 2000-2004. MMWR Morb Mortal Wkly Rep 55:301–305

    Google Scholar 

  14. World Health Organization. The end TB strategy. Available at: https://www.who.int/tb/post2015_TBstrategy.pdf?ua=1

  15. Mahon RN, Hafner R (2017) Applying precision medicine and immunotherapy advances from oncology to host-directed therapies for infectious diseases. Front Immunol 8:688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Scriba TJ, Coussens AK, Fletcher HA (2017) Human immunology of tuberculosis. Microbiol Spectr 5(1). ISSN 2165–0497. https://doi.org/10.1128/microbiolspec.tbtb2-0016-2016

  17. Green AM, Difazio R, Flynn JL (2013) IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J Immunol 190:270–277

    Article  CAS  PubMed  Google Scholar 

  18. Sakai S, Kauffman KD, Sallin MA et al (2016) CD4 T cell-derived IFN-gamma plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog 12:e1005667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lazar-Molnar E, Chen B, Sweeney KA et al (2010) Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc Natl Acad Sci U S A 107:13402–13407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A (2011) CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J Immunol 186:1598–1607

    Article  CAS  PubMed  Google Scholar 

  21. Barber DL, Sakai S, Kudchadkar RR et al (2019) Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci Transl Med 11:eaat2702

    PubMed  PubMed Central  Google Scholar 

  22. Tzelepis F, Blagih J, Khan N et al (2018) Mitochondrial cyclophilin D regulates T cell metabolic responses and disease tolerance to tuberculosis. Sci Immunol 3:eaar4135

    Article  PubMed  Google Scholar 

  23. Gan H, He X, Duan L, Mirabile-Levens E, Kornfeld H, Remold HG (2005) Enhancement of antimycobacterial activity of macrophages by stabilization of inner mitochondrial membrane potential. J Infect Dis 191:1292–1300

    Article  CAS  PubMed  Google Scholar 

  24. Ravimohan S, Kornfeld H, Weissman D, Bisson GP (2018) Tuberculosis and lung damage: from epidemiology to pathophysiology. Eur Respir Rev 27:170077

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dooley DP, Carpenter JL, Rademacher S (1997) Adjunctive corticosteroid therapy for tuberculosis: a critical reappraisal of the literature. Clin Infect Dis 25:872–887

    Article  CAS  PubMed  Google Scholar 

  26. Fullerton JN, Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15:551–567

    Article  CAS  PubMed  Google Scholar 

  27. Dennis EA, Norris PC (2015) Eicosanoid storm in infection and inflammation. Nat Rev Immunol 15:511–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mayer-Barber KD, Andrade BB, Oland SD et al (2014) Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511:99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Soehnlein O, Steffens S, Hidalgo A, Weber C (2017) Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 17:248–261

    Article  CAS  PubMed  Google Scholar 

  30. Andersson H, Andersson B, Eklund D et al (2014) Apoptotic neutrophils augment the inflammatory response to Mycobacterium tuberculosis infection in human macrophages. PLoS One 9:e101514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Dallenga T, Repnik U, Corleis B et al (2017) M. tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by macrophages. Cell Host Microbe 22:519–30 e3

    Article  CAS  PubMed  Google Scholar 

  32. Arnett E, Weaver AM, Woodyard KC et al (2018) PPARγ is critical for Mycobacterium tuberculosis induction of Mcl-1 and limitation of human macrophage apoptosis. PLoS Pathog 14:e1007100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Divangahi M, Khan N, Kaufmann E (2018) Beyond killing Mycobacterium tuberculosis: disease tolerance. Front Immunol 9:2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ordonez AA, Pokkali S, Sanchez-Bautista J et al (2019) Matrix metalloproteinase inhibition in a murine model of cavitary tuberculosis paradoxically worsens pathology. J Infect Dis 219:633–636

    Article  CAS  PubMed  Google Scholar 

  35. Xu Y, Wang L, Zimmerman MD et al (2018) Matrix metalloproteinase inhibitors enhance the efficacy of frontline drugs against Mycobacterium tuberculosis. PLoS Pathog 14:e1006974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ostrand-Rosenberg S, Fenselau C (2018) Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J Immunol 200:422–431

    Article  CAS  PubMed  Google Scholar 

  37. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Knaul JK, Jorg S, Oberbeck-Mueller D et al (2014) Lung-residing myeloid-derived suppressors display dual functionality in murine pulmonary tuberculosis. Am J Respir Crit Care Med 190:1053–1066

    Article  PubMed  CAS  Google Scholar 

  39. du Plessis N, Kotze LA, Leukes V, Walzl G (2018) Translational potential of therapeutics targeting regulatory myeloid cells in tuberculosis. Front Cell Infect Microbiol 8:332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. O’Neill LA, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16:553–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hotamisligil GS (2017) Foundations of immunometabolism and implications for metabolic health and disease. Immunity 47:406–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rathmell JC (2012) Metabolism and autophagy in the immune system: immunometabolism comes of age. Immunol Rev 249:5–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Platten M, Nollen EAA, Rohrig UF, Fallarino F, Opitz CA (2019) Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov 18:379–401

    Article  CAS  PubMed  Google Scholar 

  44. Mehra S, Alvarez X, Didier PJ et al (2013) Granuloma correlates of protection against tuberculosis and mechanisms of immune modulation by Mycobacterium tuberculosis. J Infect Dis 207:1115–1127

    Article  CAS  PubMed  Google Scholar 

  45. Gautam US, Foreman TW, Bucsan AN et al (2018) In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 115:E62–E71

    Article  CAS  PubMed  Google Scholar 

  46. Rambold AS, Pearce EL (2018) Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol 39:6–18

    Article  CAS  PubMed  Google Scholar 

  47. Hooftman A, O’Neill LAJ (2019) The immunomodulatory potential of the metabolite Itaconate. Trends Immunol 40:687–698

    Article  CAS  PubMed  Google Scholar 

  48. Nair S, Huynh JP, Lampropoulou V et al (2018) Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection. J Exp Med 215:1035–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oehlers SH, Cronan MR, Scott NR et al (2015) Interception of host angiogenic signalling limits mycobacterial growth. Nature 517:612–615

    Article  CAS  PubMed  Google Scholar 

  50. Hortle E, Johnson KE, Johansen MD et al (2019) Thrombocyte inhibition restores protective immunity to mycobacterial infection in zebrafish. J Infect Dis 220:524–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singhal A, Jie L, Kumar P et al (2014) Metformin as adjunct antituberculosis therapy. Sci Transl Med 6:263ra159

    Article  PubMed  CAS  Google Scholar 

  52. Parihar SP, Guler R, Khutlang R et al (2014) Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J Infect Dis 209:754–763

    Article  CAS  PubMed  Google Scholar 

  53. Napier RJ, Rafi W, Cheruvu M et al (2011) Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 10:475–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koo MS, Manca C, Yang G et al (2011) Phosphodiesterase 4 inhibition reduces innate immunity and improves isoniazid clearance of Mycobacterium tuberculosis in the lungs of infected mice. PLoS One 6:e17091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Singh P, Subbian S (2018) Harnessing the mTOR pathway for tuberculosis treatment. Front Microbiol 9:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Elkington P, Lerm M, Kapoor N et al (2019) In Vitro granuloma models of tuberculosis: potential and challenges. J Infect Dis 219:1858–1866

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frank, D.J., Mahon, R.N. (2021). Introduction: An Overview of Host-Directed Therapies for Tuberculosis. In: Karakousis, P.C., Hafner, R., Gennaro, M.L. (eds) Advances in Host-Directed Therapies Against Tuberculosis . Springer, Cham. https://doi.org/10.1007/978-3-030-56905-1_1

Download citation

Publish with us

Policies and ethics