Skip to main content

Water Quality

  • Chapter
  • First Online:
Water Resources of Chile

Part of the book series: World Water Resources ((WWR,volume 8))

Abstract

Water quality in Chile is characterized by diverse hydrochemical environments and their interaction with human activities and natural factors. The main water monitoring network is operated by the DGA (Dirección General de Aguas) with 1013 water quality monitoring stations for surface water, groundwater, rural drinking water systems and lakes. Boron, electric conductivity (a proxy of dissolved salts) and low pH are critical parameters in the North Macrozone. High concentrations of arsenic and copper are found throughout the North and Central Macrozones, whereas nitrate is a concern throughout the Southern Macrozone. Lakes and reservoirs exhibit a wide span of chlorophyll “a” (from oligotrophic to hypertrophic), mainly attributed to diffuse pollution, while they rarely show high concentrations of metals and metalloids. Out of the 101 watersheds defined by the DGA, only five have ambient water quality standards in place, highlighting the urgency to expand this number to protect valuable and pristine freshwater ecosystems. Over the last few years, the Chilean water quality monitoring network has seen great improvements; however, there is an urgent need to develop quantitative and conceptual water quality models to purposefully convert data into information. The “black box” statistical description of hydrochemical parameters has limited use to inform science-based decision making. Water quality is a key determinant for human and ecosystem health in urban and rural settings in Chile; thus its knowledge and protection should promote local and global sustainable development goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. International Organization for Standardization.

References

  • Arce G, Montecinos M, Guerra P, Escauriaza C, Coquery M, Pastén P (2017) Enhancement of particle aggregation in the presence of organic matter during neutralization of acid drainage in a stream confluence and its effect on arsenic immobilization. Chemosphere 180:574–583

    Article  Google Scholar 

  • Arumi JL, Oyarzun R, Sandoval M (2005) Natural protection against groundwater pollution by nitrates in the Central Valley of Chile. Hydrol Sci J 50(2):331–340

    Article  Google Scholar 

  • Bugueño MP, Acevedo SE, Bonilla CA, Pizarro GE, Pasten PA (2014) Differential arsenic binding in the sediments of two sites in Chile’s lower Loa River basin. Sci Total Environ 466–467:387–396

    Article  Google Scholar 

  • Contreras MT, Mullendorff D, Pasten P, Pizarro GE, Paola C, Escauriaza C (2015) Potential accumulation of contaminated sediments in a reservoir of a high-Andean watershed: morphodynamic connections with geochemical processes. Water Resour Res 51(5):3181–3192

    Article  Google Scholar 

  • Dirección General de Aguas (2014) Análisis crítico de la red de calidad de aguas superficiales y subterráneas de la DGA, Ministerio de Obras Públicas, Dirección General de Aguas, Departamento de Conservación y Protección de Recursos Hídricos

    Google Scholar 

  • Dirección General de Aguas (2016) Atlas del Agua Chile 2016. Dirección General de Aguas, Santiago

    Google Scholar 

  • Dirección General de Aguas (2017) Diagnóstico y Desafíos de la Red de Calidad de Aguas Subterráneas de la DGA, Ministerio de Obras Públicas, Dirección General de Aguas, Departamento de Conservación y Protección de Recursos Hídricos

    Google Scholar 

  • Dirección General de Aguas (2018) Balance de Gestión Integral Año 2017. Serie de Estudios Básicos DGA. Dirección General de Aguas, Santiago

    Google Scholar 

  • Dirección General de Aguas (2019) Red Hidrométrica - calidad del agua, Ministerio de Obras Públicas, Dirección General de Aguas, Departamento de Conservación y Protección de Recursos Hídricos. 2019

    Google Scholar 

  • DIRECTEMAR (2016) Reporte de Datos de Terreno Campaña 2016

    Google Scholar 

  • DIRECTEMAR (2017) REPORTE DE DATOS P.O.A.L

    Google Scholar 

  • DIRECTEMAR (2019) “Parámetros y matrices ambientales consideradas en el P.O.A.L.” Retrieved 15 March 2019, from https://www.directemar.cl/directemar/intereses-maritimos/p-o-a-l-programa-de-observacion-del-ambiente-litoral/parametros-y-matrices-ambientales-consideradas-en-el-p-o-a-l

  • Gobierno de Chile (2017) Informe de Diagnóstico e Implementación de la Agenda 2030 y los Objetivos de Desarrollo Sostenible en Chile

    Google Scholar 

  • Guerra P, Gonzalez C, Escauriaza C, Pizarro G, Pasten P (2016a) Incomplete mixing in the fate and transport of arsenic at a river affected by acid drainage. Water Air and Soil Pollut 227(3):20

    Article  Google Scholar 

  • Guerra P, Simonson K, Gonzalez C, Gironas J, Escauriaza C, Pizarro G, Bonilla C, Pasten P (2016b) Daily freeze-thaw cycles affect the transport of metals in streams affected by acid drainage. Water 8(3):74

    Article  Google Scholar 

  • Lee G, Bigham JM, Faure G (2002) Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl Geochem 17(5):569–581

    Article  Google Scholar 

  • Ministerio del Medio Ambiente (2016) Plan de Acción para la Conservación de Humedales

    Google Scholar 

  • Ministerio del Medio Ambiente (2017) Guía para la Elaboración de Normas Secundarias de Calidad Ambiental en Aguas Continentales y Marinas. Ministerio del Medio Ambiente, Santiago

    Google Scholar 

  • Oyarzun J, Castillo D, Maturana H, Kretschmer N, Soto G, Amezaga JM, Rotting TS, Younger PL, Oyarzun R (2012) Abandoned tailings deposits, acid drainage and alluvial sediments geochemistry, in the arid Elqui River basin, North-Central Chile. J Geochem Explor 115:47–58

    Article  Google Scholar 

  • Oyarzun J, Carvajal MJ, Maturana H, Núñez J, Kretschmer N, Amezaga JM, Rötting TS, Strauch G, Thyne G, Oyarzún R (2013) Hydrochemical and isotopic patterns in a calc-alkaline cu- and au-rich arid Andean basin: the Elqui River watershed, North Central Chile. Appl Geochem 33.(Suppl C:50–63

    Article  Google Scholar 

  • Pastén P, Vega AS, Guerra P, Pizarro J, Lizama K (2019) Water quality in Chile: progress, challenges and perspectives. In: Vammen K, Vaux H, de la Cruz Molina A (eds) Water quality in the Americas: risks and opportunities. The Inter-American Network of Academies of Sciences (IANAS-IAP), Mexico

    Google Scholar 

  • Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27

    Article  Google Scholar 

  • Pizarro J, Rubio MA, Castillo X (2003) Study of chemical speciation in sediments: an approach to vertical metals distribution in Rapel reservoir (Chile). J Chil Chem Soc 48(3):45–50

    Google Scholar 

  • Pizarro J, Rubio MA, Matta A (2009) Diffusion of Fe, Mn, Mo and Sb in the sediment-water interface of a shallow lake, Laguna Caren, Santiago (Chile). Fresenius Environ Bull 18(12):2336–2344

    Google Scholar 

  • Pizarro J, Vergara PM, Rodriguez JA, Sanhueza PA, Castro SA (2010) Nutrients dynamics in the main river basins of the centre-southern region of Chile. J Hazard Mater 175(1–3):608–613

    Article  Google Scholar 

  • Pizarro J, Vergara PM, Cerda S, Briones D (2016) Cooling and eutrophication of southern Chilean lakes. Sci Total Environ 541:683–691

    Article  Google Scholar 

  • SISS (2018a) Calidad del Agua Potable 2018

    Google Scholar 

  • SISS (2018b) Informe de Sanciones 2017

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  Google Scholar 

  • Tang YK, Peng XY, Yang WW, Zhang Y, Yin MZ, Liang Y, Dong ZF (2017) Emerging pollutants – part I: occurrence, fate and transport. Water Environ Res 89(10):1810–1828

    Article  Google Scholar 

  • UN (2015) Transforming our World: the 2030 Agenda for Sustainable Development. A/RES/70/1, 21 October. General_Assembly

    Google Scholar 

  • UN Water (2017) Step-by-step Methodology for Indicator 6.3.2 on Ambient Water Quality

    Google Scholar 

  • Vega AS, Planer-Friedrich B, Pasten PA (2017) Arsenite and arsenate immobilization by preformed and concurrently formed disordered mackinawite (FeS). Chem Geol 475:62–75

    Article  Google Scholar 

  • Vega AS, Lizama K, Pastén P (2018a) Water quality: trends and challenges. In: Donoso G (ed) Water policy in Chile, vol 255. Springer, Heidelberg

    Google Scholar 

  • Vega M, Nerenberg R, Vargas IT (2018b) Perchlorate contamination in Chile: legacy, challenges, and potential solutions. Environ Res 164:316–326

    Article  Google Scholar 

  • World Health Organization (2017) Guidelines for drinking-water quality: fourth edition incorporating first addendum. World Health Organization, Geneva

    Google Scholar 

Download references

Acknowledgements

We acknowledge Mónica Musalem (DGA) and Amerindia Jaramillo (MMA) for fruitful discussions, as well as Guillermo Arce and Pablo Moya from CEDEUS for assistance in checking and preparing material for the manuscript. We also thank CONICYT-FONDAP 15110020 and Fondecyt 1161337 for funding, DGA and SISS for sharing water quality data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Pastén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pastén, P., Vega, A., Lizama, K., Guerra, P., Pizarro, J. (2021). Water Quality. In: Fernández, B., Gironás, J. (eds) Water Resources of Chile. World Water Resources, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-56901-3_10

Download citation

Publish with us

Policies and ethics