Skip to main content

Electrolyzed Water as a Potential Agent for Controlling Postharvest Decay of Fruits and Vegetables

  • Chapter
  • First Online:
Postharvest Pathology

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 11))

Abstract

Disinfection after harvest is an essential step to maintain commodities and facilities free of fungal and bacterial postharvest pathogens, responsible of storage decay and economic losses. Electrolyzed water (EW) has gained considerable interest over the last decades as a novel broad-spectrum sanitizer. EW is sustainable and cost effective since it can be produced on-site utilizing tap water and different inexpensive salts and is healthy for both the environment and human beings. Its effectiveness in controlling fungi, yeasts, and bacteria within a wide range of pH is due to multiple mode of actions. Furthermore, its strong oxidizing potential is capable to reduce the amount of pesticide residues on fruit and vegetable surfaces and to avoid pathogen resistance. Properties of EW are related to salts employed for production, being those with low chlorine content preferable. Lastly, EW has no negative effect on the organoleptic properties and features of treated commodities. The present chapter highlights recent developments in EW generation, factors affecting its effectiveness for controlling postharvest decay of fruits and vegetables, mechanism of action on microbes and hosts, and advantages and disadvantages on its use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrich JM, McCarthy CA, Hurs JK (1981) Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc Natl Acad Sci U S A 78(1):210–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albrich JM, Gilbaugh JH, Callahan KB et al (1986) Effects of the putritive neutrophil– generated toxin, hypochlorous acid, on membrane permeability and transport systems of Escherichia coli. J Clin Invest 78:177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Haq MI, Gómez-López VM (2012) Electrolyzed oxidizing water. In: Gómez-López VM (ed) Decontamination of fresh and minimally processed produce, 1st edn. Wiley-Blackwell, Hoboken, pp 135–164

    Chapter  Google Scholar 

  • Al-Haq MI, Seo Y, Oshita S et al (2001) Fungicidal effectiveness of electrolyzed oxidizing water on post harvest brown rot of peach. Hortic Sci 36:1310–1314

    CAS  Google Scholar 

  • Al-Haq MI, Seo Y, Oshita S et al (2002) Disinfection effects of electrolyzed oxidizing water on suppressing fruit rot of pear caused by Botryosphaeria berengeriana. Food Res Int 35:657–664

    Article  Google Scholar 

  • Al-Haq MI, Sugiyama J, Isobe S (2005) Applications of electrolyzed water in agriculture and food industries. Food Sci Technol Res 11:135–150

    Article  Google Scholar 

  • Anglada A, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84:1747–1755

    Article  CAS  Google Scholar 

  • Anonymous (1997) Principle of formation of electrolytic water. Hoshizaki Electic Co., Ltd., Sakae, Toyoake

    Google Scholar 

  • Audenaert K, Monbaliu S, Deschuyffeleer N et al (2012) Neutralized electrolyzed water efficiently reduces Fusarium spp. in vitro and on wheat kernels but can trigger deoxynivalenol (DON) biosynthesis. Food Control 23(2):515–521

    Article  CAS  Google Scholar 

  • Barrette WCJ, Hannum DM, Wheeler WD et al (1989) General mechanism for the bacterial toxicity of hypochlorous acid: abolition of ATP production. Biochemistry-US 28:9172–9178

    Article  CAS  Google Scholar 

  • Bessi H, Debbabi H, Grissa K et al (2014) Microbial reduction and quality of stored date fruits treated by electrolyzed water. J Food Qual 37:42–49

    Article  CAS  Google Scholar 

  • Bonde MR, Nester SE, Khayat A et al (1999) Comparison of effects of acidic electrolyzed water and NaOCl on Tilletia indica teliospore germination. Plant Dis 83:627–632

    Article  CAS  PubMed  Google Scholar 

  • Buck JW, Van Iersel MW, Oetting RD et al (2002) In vitro fungicidal activity of acidic electrolyzed oxidizing water. Plant Dis 86(3):278–281

    Article  CAS  PubMed  Google Scholar 

  • Buck JW, Van Iersel MW, Oetting RD et al (2003) Evaluation of acidic electrolyzed water for phytotoxic symptoms on foliage and flowers of bedding plants. Crop Prot 22:73–77

    Article  Google Scholar 

  • Chen Y, Xie H, Tang J et al (2020) Effects of acidic electrolyzed water treatment on storability, quality attributes and nutritive properties of longan fruit during storage. Food Chem 320:126641

    Article  CAS  PubMed  Google Scholar 

  • Citizens Concerned About Chloramine (2019) http://www.chloramine.org/. Accessed 15 Jan 2020

  • Deborde M, Von Gunten URS (2008) Reactions of chlorine with inorganic and organic compounds during water treatment kinetics and mechanisms: a critical review. Water Res 42:13–51

    Article  CAS  PubMed  Google Scholar 

  • Deza M, Araujo M, Garrido M (2007) Efficacy of neutral electrolyzed water to inactivate Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus on plastic and wooden kitchen cutting boards. J Food Prot 70(1):102–108

    Article  CAS  PubMed  Google Scholar 

  • Ding T, Ge Z, Shi J et al (2015) Impact of slightly acidic electrolyzed water (SAEW) and ultrasound on microbial loads and quality of fresh fruits. Food Sci Technol 60(2):1195–1199

    CAS  Google Scholar 

  • Fallanaj F, Sanzani SM, Zavanella C et al (2013) Salt addition improves the control of citrus postharvest diseases using electrolysis with conductive diamond electrodes. J Plant Pathol 95(2):373–383

    Google Scholar 

  • Fallanaj F, Sanzani SM, Youssef K et al (2015) A new perspective in controlling postharvest citrus rots: the use of electrolyzed water. Acta Hortic 1065:1599–1605

    Article  Google Scholar 

  • Fallanaj F, Ippolito A, Ligorio A et al (2016) Electrolyzed sodium bicarbonate inhibits Penicillium digitatum and induces defence responses against green mould in citrus fruit. Postharvest Biol Technol 115:18–29

    Article  CAS  Google Scholar 

  • Feliciano L, Lee J, Pascall MA (2012) Transmission electron microscopic analysis showing structural changes to bacterial cells treated with electrolyzed water and an acidic sanitizer. J Food Sci 77(4):M182–M187

    Article  CAS  PubMed  Google Scholar 

  • Feliziani E, Lichter A, Smilanick JL et al (2016) Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biol Techol 122:53–69

    Article  CAS  Google Scholar 

  • Finnegan M, Linley E, Denyer SP et al (2010) Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. J Antimicrob Chemoth 65:2108–2115

    Article  CAS  Google Scholar 

  • Forghani F, Park JH, Oh DH (2015) Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water. Food Microbiol 48:28–34

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara K, Fujii T, Park JS (2009) Comparison of foliar spray efficacy of electrolytically ozonated water and acidic electrolyzed oxidizing water for controlling powdery mildew infection on cucumber leaves. Ozone Sci Eng 31:10–14

    Article  CAS  Google Scholar 

  • Furuta T, Tanaka H, Nishiki Y et al (2004) Legionella inactivation with diamond electrodes. Diam Relat Mater 13:2016–2019

    Article  CAS  Google Scholar 

  • Gómez-López VM, Ragaert P, Ryckeboer J et al (2007) Shelf-life of minimally processed cabbage treated with neutral electrolysed oxidising water and stored under equilibrium modified atmosphere. Int J Food Microbiol 117(1):91–98

    Article  PubMed  Google Scholar 

  • Gómez-López VM, Marín A, Medina-Martínez MS et al (2013) Generation of trihalomethanes with chlorine-based sanitizers and impact on microbial, nutritional and sensory quality of baby spinach. Postharvest Biol Technol 85:210–217

    Article  Google Scholar 

  • Grech NM, Rijkenberg FHJ (1992) Injection of electronically generated chlorine into citrus micro-irrigation systems for the control of certain waterborne root pathogens. Plant Dis 76:446–457

    Article  Google Scholar 

  • Guentzel JL, Lam KL, Callan MA et al (2008) Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiol 25:36–41

    Article  CAS  PubMed  Google Scholar 

  • Guentzel JL, Lam KL, Callan MA et al (2010) Postharvest management of gray mould and brown rot on surfaces of peaches and grapes using electrolyzed oxidizing water. Int J Food Microbiol 143:54–60

    Article  CAS  PubMed  Google Scholar 

  • Guentzel JL, Callan MA, Emmons SA et al (2011) Evaluation of electrolyzed oxidizing water for phytotoxic effects and pre-harvest management of gray mold disease on strawberry plants. Crop Prot 30:1274–1279

    Article  CAS  Google Scholar 

  • Han YT, Song L, An QS et al (2017) Removal of six pesticide residues in cowpea with alkaline electrolysed water. J Sci Food Agric 97:2333–2338

    Article  CAS  PubMed  Google Scholar 

  • Hao JX, Li LT (2006) Study on the removal of pesticide residue of vegetables by electrolyzed functional water. Sci Technol Food Ind 5:164–166

    Google Scholar 

  • Hao J, Liu H, Liu R et al (2011a) Efficacy of slightly acidic electrolyzed water (SAEW) for reducing microbial contamination on fresh-cut Cilantro. J Food Saf 31(1):28–34

    Article  CAS  Google Scholar 

  • Hao J, Liu H, Chen T et al (2011b) Reduction of pesticide residues on fresh vegetables with electrolyzed water treatment. J Food Sci 76(4):C520–C524

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Li H, Wan Y et al (2015a) Combined effect of acidic electrolyzed water (AcEW) and alkaline electrolyzed water (AlEW) on the microbial reduction of fresh-cut cilantro. Food Control 50:699–704

    Article  CAS  Google Scholar 

  • Hao J, Li H, Wan Y et al (2015b) Effect of slightly acidic electrolyzed water (SAEW) treatment on the microbial reduction and storage quality of fresh-cut Cilantro. J Food Process Pres 39(6):559–566

    Article  CAS  Google Scholar 

  • Hirayama Y, Asano S, Watanabe K et al (2016) Control of Colletotrichum fructicola on strawberry with a foliar spray of neutral electrolyzed water through an overhead irrigation system. J Gen Plant Pathol 82:186–189

    Article  CAS  Google Scholar 

  • Hou M, Gao J, Deng L et al (2011) Effect of electrolyzed water on growth and development, nutritional quality of Chinese cabbage. Hubei Agric Sci 7(50):1342–1346

    Google Scholar 

  • Hricova D, Stephan R, Zweifel C (2008) Electrolyzed water and its application in the food industry. J Food Prot 71(9):1934–1947

    Article  CAS  PubMed  Google Scholar 

  • Hu ZH, Wu TJ, Wan YF et al (2016) Study on the removal of dimethoate and chlorpyrifos in leek by slightly acidic electrolyzed water. Sci Technol Food Ind 37(01):49–52

    CAS  Google Scholar 

  • Huang YR, Hung YC, Hsu SY et al (2008) Application of electrolyzed water in the food industry. Food Control 19:329–345

    Google Scholar 

  • Hung YC, Bailly D, Kim C et al (2010a) Effect of electrolyzed oxidizing water and chlorinated water treatments on strawberry and broccoli quality. J Food Qual 33(5):578–598

    Article  CAS  Google Scholar 

  • Hung YC, Tilly P, Kim C (2010b) Efficacy of electrolyzed oxidizing (Eo) water and chlorinated water for inactivation of Escherichia coli O157:H7 on strawberries and broccoli. J Food Qual 33(5):559–577

    Article  CAS  Google Scholar 

  • Hurst JK, Barrette WCJ, Michel BR et al (1991) Hypochlorous acid and myeleperoxidasecatalyzed oxidation of iron-sulfur clusters in bacterial respiratory dehydrogenase. Eur J Biochem 202:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Hussien A, Al-Essawy A, Rehab A et al (2017) Preliminary investigation of alkaline and acidic electrolysed water to control Penicillium species of citrus. Citrus Res Technol 38(2):175–183

    Article  Google Scholar 

  • Hussien A, Ahmed Y, Al-Essawy AH et al (2018) Evaluation of different salt-amended electrolysed water to control postharvest moulds of citrus. Trop Plant Pathol 43(1):10–20

    Article  Google Scholar 

  • Jay JM (1996) Modern food microbiology, 5th edn. Aspen Pub, Frederick, pp 48–49

    Book  Google Scholar 

  • Jemni M, Gomez P, Souza M et al (2014) Combined effect of UV-C, ozone and electrolyzed water for keeping overall quality of date palm. Food Sci Technol 59(2):649–655

    CAS  Google Scholar 

  • Jeong J, Kim C, Yoon J (2009) The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Water Res 43:895–901

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Melbourne P (1996) Photolytic spectroscopic quantification of residual chlorine in potable waters. Analyst 121:1075–1078

    Article  CAS  Google Scholar 

  • Kim C, Hung Y, Brackett RE (2000) Roles of oxidation-reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. J Food Prot 63:19–24

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Hung Y-C, Brackett RE et al (2001) Inactivation of Listeria monocytogenes biofilms by electrolyzed oxidizing water. J Food Process Preserv 25:91–100

    Article  Google Scholar 

  • Kiura H, Sano K, Morimatsu S et al (2002) Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration. J Microbiol Meth 49(3):285–293

    Article  CAS  Google Scholar 

  • Koide S, Takeda J, Shi J et al (2009) Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control 20(3):294–297

    Article  CAS  Google Scholar 

  • Koseki S, Itoh K (2002) Effect of nitrogen gas packaging on the quality and microbial growth of freshcut vegetables under low temperature. J Food Prot 65(2):326–332

    Article  PubMed  Google Scholar 

  • Koseki S, Fujiwara K, Itoh K (2002) Decontamination effect of frozen acidic electrolyzed water on lettuce. J Food Prot 65:411–414

    Article  PubMed  Google Scholar 

  • Koseki S, Yoshida K, Isobe S et al (2004) Efficacy of acidic electrolyzed water for microbial decontamination of cucumbers and strawberries. J Food Prot 67(6):1247–1251

    Article  CAS  PubMed  Google Scholar 

  • Kunina LA (1967) From experience in the electrolytic decontamination of drinking water. Gig Sanit 32:100–101

    CAS  PubMed  Google Scholar 

  • Lee JH, Rhee P, Kim JH et al (2004) Efficacy of electrolyzed acid water in reprocessing patient-used flexible upper endoscopes: comparison with 2% alkaline glutaraldehyde. J Gastroenterol Hepatol 19:897–903

    Article  CAS  PubMed  Google Scholar 

  • Len SV, Hung YC, Chung D et al (2002) Effects of storage conditions and pH on chlorine loss in electrolyzed oxidizing (EO) water. J Agric Food Chem 50(1):209–212

    Article  CAS  PubMed  Google Scholar 

  • Li XW, Sun SH, Li T (1996) Preliminary study of microbiocide effect and its mechanism of electrolyzed oxidizing water. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi 17(2):95

    CAS  PubMed  Google Scholar 

  • Li J, Ding T, Liao X et al (2017) Synergetic effects of ultrasound and slightly acidic electrolyzed water against Staphylococcus aureus evaluated by flow cytometry and electron microscopy. Ultrason Sonochem 38:711–719

    Article  CAS  PubMed  Google Scholar 

  • Li L, Hao J, Song S et al (2018) Effect of slightly acidic electrolyzed water on bioactive compounds and morphology of broccoli sprouts. Food Res Int 105:102–109

    Article  CAS  PubMed  Google Scholar 

  • Liao LB, Chen WM, Xiao XM (2007) The generation and inactivation mechanism of oxidationreduction potential of electrolyzed oxidizing water. J Food Eng 78:1326–1332

    Article  CAS  Google Scholar 

  • Liu HJ, Li RZ, Su DH et al (2015) Degradation of Lambda-cyhalothrin in fruits and vegetable by alkaline electrolyzed water. Food Sci Technol 40(2):123–127

    CAS  Google Scholar 

  • López-Gálvez F, Posada-Izquierdo GD, Selma MV et al (2012) Electrochemical disinfection: an efficient treatment to inactivate Escherichia coli O157: H7 in process wash water containing organic matter. Food Microbiol 30(1):146–156

    Article  PubMed  Google Scholar 

  • Luo Q, Zu YH, Shi KQ et al (2014) Study on the reduction effect of pesticide residues of vegetables with slightly acidic electrolyzed water. J Food Saf Qual 5(11):3657–3663

    Google Scholar 

  • Mahmoud BS (2007) Electrolyzed water: a new technology for food decontamination - a review. Dtsch Lebensmitt Rundsch 103(5):212–221

    CAS  Google Scholar 

  • Martínez-Huitle CA, Brillas E (2008) Electrochemical alternatives for drinking water disinfection. Angew Chem Int Edit 47(11):1998–2005

    Article  Google Scholar 

  • McPherson LL (1993) Understanding ORP’s in the disinfection process. Water Eng Manage 140:29–31

    Google Scholar 

  • Nakagawara S, Goto T, Nara M et al (1998) Spectroscopic characterization and the pH dependence of bactericidal activity of the aqueous chlorine solution. Anal Sci 14:691–698

    Article  CAS  Google Scholar 

  • Nakajima N, Nakano T, Harada F et al (2004) Evaluation of disinfective potential of reactivated free chlorine in pooled tap water by electrolysis. J Microbiol Meth 57(2):163–173

    Article  CAS  Google Scholar 

  • Navarro-Rico J, Artes-Hernandez F, Gomez PA et al (2014) Neutral and acidic electrolysed water kept microbial quality and health promoting compounds of fresh-cut broccoli throughout shelf life. Innov Food Sci Emerg Technol 21:74–81

    Article  CAS  Google Scholar 

  • Okull DO, Laborde LF (2004) Activity of electrolyzed oxidizing water against Penicillium expansum on suspension and on wounded apples. J Food Sci 69:23–27

    Article  Google Scholar 

  • Oomori T, Oka T, Inuta T et al (2000) The efficiency of disinfection of acidic electrolyzed water in the presence of organic materials. Anal Sci 16:465–469

    Article  Google Scholar 

  • Pangloli P, Hung YC (2013) Effects of water hardness and pH on efficacy of chlorine-based sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Food Control 32(2):626–631

    Article  CAS  Google Scholar 

  • Park CM, Hung YC, Doyle MP et al (2001) Pathogen reduction and quality of lettuce treated with electrolyzed oxidizing and acidified chlorinated water. J Food Sci 66:1368–1372

    Article  CAS  Google Scholar 

  • Park SG, Lim HJ, Kim JK et al (2004a) Microbiocidal effect of E. coli with ozone solution generated by BDD electrode. http://www.electrochem.org/dl/ma/206/pdfs/2185.pdf. Accessed 24 Jan 2020

  • Park H, Hung YC, Chung D (2004b) Effects of chlorine and pH on efficacy of electrolyzed water for inactivating Escherichia coli 157:H7 and Listeria monocytogenes. Int J Food Microbiol 91:13–18

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Alexander E, Taylor GA et al (2009) The decontaminative effects of acidic electrolyzed water for Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on green onions and tomatoes with differing organic demands. Food Microbiol 26:386–390

    Article  CAS  PubMed  Google Scholar 

  • Pinto L, Ippolito A, Baruzzi F (2015) Control of spoiler Pseudomonas spp. on fresh cut vegetables by neutral electrolyzed water. Food Microbiol 50:102–108

    Article  CAS  PubMed  Google Scholar 

  • Qi H, Huang Q, Hung YC (2018) Effectiveness of electrolyzed oxidizing water treatment in removing pesticide residues and its effect on produce quality. Food Chem 239:561–568

    Article  CAS  PubMed  Google Scholar 

  • Rahman SME, Ding T, Oh DW (2010a) Inactivation effect of newly developed low concentration electrolyzed water and other sanitizers against microorganisms on spinach. Food Control 21(10):1383–1387

    Article  CAS  Google Scholar 

  • Rahman SME, Jin YG, Oh DW (2010b) Combined effects of alkaline electrolyzed water and citric acid with mild heat to control microorganisms on cabbage. J Food Sci 75:M111–M115

    Article  CAS  PubMed  Google Scholar 

  • Rahman SME, Khan I, Oh DH (2016) Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Compr Rev Food Sci Food Saf 15:471–490

    Article  Google Scholar 

  • Roberts RG, Reymond ST (1994) Chlorine dioxide for reduction of postharvest pathogen inoculum during handling of tree fruits. Appl Environ Microbiol 60:2864–2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sargent SA, Ritenour MA, Brecht JK (2000) Handling, cooling and sanitation techniques for maintaining postharvest quality. University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, EDIS

    Google Scholar 

  • Siddiqui MW (2018) Postharvest disinfection of fruits and vegetables. Academic, Elsevier

    Google Scholar 

  • Solomon S, Singh P (2009) Efficacy of electrolyzed water to minimize postharvest sucrose losses in sugarcane. Sugar Tech 11(2):228–230

    Article  CAS  Google Scholar 

  • Sung JM, Kwon KH, Kim JH et al (2011) Effect of washing treatments on pesticide residues and antioxidant compounds in Yuja (Citrus junos Sieb ex Tanaka). Food Sci Biotechnol 20(3):767–773

    Article  CAS  Google Scholar 

  • Sung JM, Park KJ, Lim JH et al (2012) Removal effects of microorganism and pesticide residues on Chinese cabbages by electrolyzed water washing. Korean J Food Sci Technol 44(5):628–633

    Article  Google Scholar 

  • Suzuki T, Noro T, Kawamura Y et al (2002) Decontamination of aflatoxin-forming fungus and elimination of aflatoxin mutagenicity with electrolyzed NaCl anode solution. J Agric Food Chem 50:633–641

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Fujisawa T, Daimon T et al (1999) The effect of electrolyzed strong acid aqueous solution on hemodialysis equipment. Artif Organs 23:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Tango C, Khan I, Ngnitcho K et al (2017) Slightly acidic electrolyzed water combined with chemical and physical treatments to decontaminate bacteria on fresh fruits. Food Microbiol 67: 97–105

    Google Scholar 

  • Vandekinderen I, Van Camp J, Devlieghere F et al (2008) Effect of decontamination agents on the microbial population, sensory quality, and nutrient content of grated carrots (Daucus carota L.). J Agric Food Chem 56:5723–5731

    Article  CAS  PubMed  Google Scholar 

  • Vandekinderen I, Van Camp J, Devlieghere F et al (2009a) Evaluation of the use of decontamination agents during fresh-cut leek processing and quantification of their effect on its quality by means of multidisciplinary approach. Innov Food Sci Emerg Technol 10:363–373

    Article  CAS  Google Scholar 

  • Vandekinderen I, Van Camp J, Devlieghere F et al (2009b) Effect of decontamination on the microbial load, the sensory quality and the nutrient retention of ready-to-eat white cabbage. Eur Food Res Technol 229:443–455

    Article  CAS  Google Scholar 

  • Vandekinderen I, Van Camp J, De Meulenaer B et al (2009c) Moderate and high doses of sodium hypochlorite, neutral electrolyzed oxidizing water, peroxyacetic acid, and gaseous chlorine dioxide did not affect the nutritional and sensory quality of fresh-cut iceberg lettuce (Lactuca sativa var. capitata L.) after washing. J Agric Food Chem 57:4195–4203

    Article  CAS  PubMed  Google Scholar 

  • Venczel LV, Arrowood M, Hurd M et al (1997) Inactivation of Cryptosporidium parvum and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine. Appl Environ Microbiol 63(4):1598–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkitanarayanan KS, Ezeike OI, Hung Y et al (1999) Efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes. Appl Environ Microbiol 65:4276–4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virto R, Manas P, Alvarez I et al (2005) Membrane damage and microbial inactivation by chlorine in the absence and presence of a chlorine-demanding substrate. Appl Environ Microbiol 71:5022–5028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Han R (2019) Removal of pesticide on food by electrolyzed water. In: Electrolyzed water in food: fundamentals and applications. Springer, Singapore, pp 39–65

    Chapter  Google Scholar 

  • Whangchai K, Saengnil K, Singkamanee C et al (2010) Effect of electrolyzed oxidizing water and continuous ozone exposure on the control of Penicillium digitatum on tangerine cv ‘Sai Nam Pung’ during storage. Crop Prot 29:386–389

    Article  CAS  Google Scholar 

  • White GC (1998) Handbook of chlorination and alternative disinfectants, 4th edn. Wiley, New York, pp 212–287

    Google Scholar 

  • Wuyun DL (2011) Mechanism and application of slightly acid electrolyzed functional water degradation of organophosphorus pesticide residues. China Agricultural University

    Google Scholar 

  • Xiong K, Li XT, Guo S et al (2014) The antifungal mechanism of electrolyzed oxidizing water against Aspergillus flavus. Food Sci Biotechnol 23(2):661–669

    Article  CAS  Google Scholar 

  • Xuan X, Ling J (2019) Generation of electrolyzed water. In: Electrolyzed water in food: fundamentals and applications. Springer/Zhejiang University Press, Hangzhou

    Google Scholar 

  • Youssef K, Hussien A (2020) Electrolysed water and salt solutions can reduce green and blue molds while maintain the quality properties of ‘Valencia late’ oranges. Postharvest Biol Technol 159:111025

    Article  CAS  Google Scholar 

  • Youssef K, Mustafa ZMM, Al-Essawy A (2018) Efficacy of alkaline and acidic electrolysed water generated by some salt solutions against gray mold of table grape: pre and postharvest applications. J Phytopathol Pest Manag 5(1):1–21

    Google Scholar 

  • Zhang Q, Xiong K, Tatsumi E et al (2012) Elimination of aflatoxin B1 in peanuts by acidic electrolyzed oxidizing water. Food Control 27(1):16–20

    Article  CAS  Google Scholar 

  • Zhang C, Cao W, Hung Y et al (2016a) Application of electrolyzed oxidizing water in production of radish sprouts to reduce natural microbiota. Food Control 67:177–182

    Article  CAS  Google Scholar 

  • Zhang C, Cao W, Hung Y et al (2016b) Disinfection effect of slightly acidic electrolyzed water on celery and cilantro. Food Control 69:147–152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Ippolito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ippolito, A., Mincuzzi, A., Surano, A., Youssef, K., Sanzani, S.M. (2021). Electrolyzed Water as a Potential Agent for Controlling Postharvest Decay of Fruits and Vegetables. In: Spadaro, D., Droby, S., Gullino, M.L. (eds) Postharvest Pathology. Plant Pathology in the 21st Century, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-56530-5_12

Download citation

Publish with us

Policies and ethics