Skip to main content

Lipoprotein Subfractions in Clinical Practice

  • Chapter
  • First Online:
Therapeutic Lipidology

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Subfractionation methods provide increased granularity for size and density plasma lipoproteins. The prevailing hypothesis is that this increased granularity will isolate the most atherogenic measure of cholesterol. Plasma lipoproteins continuously change in size and composition in order to transport cholesterol and triglycerides between tissues. Several methods for measuring lipoprotein subfractions are commercially available including electrophoresis, nuclear magnetic resonance, ion mobility, and direct homogeneous enzymatic methods. The various methods measure different lipoprotein components, separate subfractions by different means, and define small, medium, and large by different limits. Consequently, concordance across methods is relatively poor. Smaller low-density lipoprotein (LDL) subfractions are associated with increased risk of atherosclerosis. However, this association is attenuated in models that account for basic lipid parameters such as total LDL cholesterol or apolipoprotein B. This suggests that the information provided by LDL subfractions is neither independent nor additive to standard lipid assessments. Subfractions of high-density lipoproteins have been controversial and often conflicting regarding which size fractions are associated with risk. No clinical society has recommended the use of subfractionation and several relevant organizations including the American Heart Association and the National Lipid Association specifically recommend against use of lipoprotein subfraction testing in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawber TR, Moore FE, Mann GV. Coronary heart disease in the Framingham study. Am J Public Health Nations Health. 1957;47(4 Pt 2):4–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fredrickson DS, Levy RI, Lees RS. Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. N Engl J Med. 1967;276(5):273–81. concl.

    Article  CAS  PubMed  Google Scholar 

  3. Fredrickson DS, Levy RI, Lees RS. Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. N Engl J Med. 1967;276(4):215–25. contd.

    Article  CAS  PubMed  Google Scholar 

  4. Fredrickson DS, Levy RI, Lees RS. Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. N Engl J Med. 1967;276(3):148–56. contd.

    Article  CAS  PubMed  Google Scholar 

  5. Fredrickson DS, Levy RI, Lees RS. Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. N Engl J Med. 1967;276(2):94–103. contd.

    Article  CAS  PubMed  Google Scholar 

  6. Fredrickson DS, Levy RI, Lees RS. Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. N Engl J Med. 1967;276(1):34–42. contd.

    Article  CAS  PubMed  Google Scholar 

  7. Fredrickson DS, Levy RI, Lindgren FT. A comparison of heritable abnormal lipoprotein patterns as defined by two different techniques. J Clin Invest. 1969;47(11):2446–57.

    Article  CAS  PubMed  Google Scholar 

  8. Phillips MC. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life. 2014;66(9):616–23.

    Article  CAS  PubMed  Google Scholar 

  9. Schaefer EJ, et al. Human apolipoprotein A-I and A-II metabolism. J Lipid Res. 1982;23(6):850–62.

    CAS  PubMed  Google Scholar 

  10. Glomset JA. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res. 1968;9(2):155–67.

    CAS  PubMed  Google Scholar 

  11. Williams DL, et al. Scavenger receptor BI and cholesterol trafficking. Curr Opin Lipidol. 1999;10(4):329–39.

    Article  CAS  PubMed  Google Scholar 

  12. Rosenson RS, et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem. 2011;57(3):392–410.

    Article  CAS  PubMed  Google Scholar 

  13. Niu W, Qi Y. Circulating cholesteryl ester transfer protein and coronary heart disease: mendelian randomization meta-analysis. Circ Cardiovasc Genet. 2015;8(1):114–21.

    Article  CAS  PubMed  Google Scholar 

  14. Tall AR. Plasma cholesteryl ester transfer protein. J Lipid Res. 1993;34(8):1255–74.

    CAS  PubMed  Google Scholar 

  15. Stahel P, et al. The atherogenic dyslipidemia complex and novel approaches to cardiovascular disease prevention in diabetes. Can J Cardiol. 2018;34(5):595–604.

    Article  PubMed  Google Scholar 

  16. Nicholls SJ, et al. Evacetrapib alone or in combination with statins lowers lipoprotein(a) and total and small LDL particle concentrations in mildly hypercholesterolemic patients. J Clin Lipidol. 2016;10(3):519–527 e4.

    Article  PubMed  Google Scholar 

  17. Krauss RM, et al. Changes in LDL particle concentrations after treatment with the cholesteryl ester transfer protein inhibitor anacetrapib alone or in combination with atorvastatin. J Clin Lipidol. 2015;9(1):93–102.

    Article  PubMed  Google Scholar 

  18. Krauss RM. Lipoprotein subfractions and cardiovascular disease risk. Curr Opin Lipidol. 2010;21(4):305–11.

    Article  CAS  PubMed  Google Scholar 

  19. Austin MA, Hokanson JE, Brunzell JD. Characterization of low-density lipoprotein subclasses: methodologic approaches and clinical relevance. Curr Opin Lipidol. 1994;5(6):395–403.

    Article  CAS  PubMed  Google Scholar 

  20. Sacks FM, Campos H. Clinical review 163: cardiovascular endocrinology: low-density lipoprotein size and cardiovascular disease: a reappraisal. J Clin Endocrinol Metab. 2003;88(10):4525–32.

    Article  CAS  PubMed  Google Scholar 

  21. Austin MA, Krauss RM. Genetic control of low-density-lipoprotein subclasses. Lancet. 1986;2(8507):592–5.

    Article  CAS  PubMed  Google Scholar 

  22. Chung M, et al. Comparability of methods for LDL subfraction determination: a systematic review. Atherosclerosis. 2009;205(2):342–8.

    Article  CAS  PubMed  Google Scholar 

  23. Banuls C, et al. Comparability of two different polyacrylamide gel electrophoresis methods for the classification of LDL pattern type. Clin Chim Acta. 2012;413(1–2):251–7.

    Article  CAS  PubMed  Google Scholar 

  24. Kulkarni KR, et al. Quantification of cholesterol in all lipoprotein classes by the VAP-II method. J Lipid Res. 1994;35(1):159–68.

    CAS  PubMed  Google Scholar 

  25. Ensign W, Hill N, Heward CB. Disparate LDL phenotypic classification among 4 different methods assessing LDL particle characteristics. Clin Chem. 2006;52(9):1722–7.

    Article  CAS  PubMed  Google Scholar 

  26. Sninsky JJ, et al. Classification of LDL phenotypes by 4 methods of determining lipoprotein particle size. J Investig Med. 2013;61(6):942–9.

    Article  CAS  PubMed  Google Scholar 

  27. Otvos JD. Measurement of lipoprotein subclass profiles by nuclear magnetic resonance spectroscopy. Clin Lab. 2002;48(3–4):171–80.

    CAS  PubMed  Google Scholar 

  28. Baumstark D, et al. 1H NMR spectroscopy quantifies visibility of lipoproteins, subclasses, and lipids at varied temperatures and pressures. J Lipid Res. 2019;60:1516–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jimenez B, et al. Quantitative lipoprotein subclass and low molecular weight metabolite analysis in human serum and plasma by (1)H NMR spectroscopy in a multilaboratory trial. Anal Chem. 2018;90(20):11962–71.

    Article  CAS  PubMed  Google Scholar 

  30. Needham LL, et al. Phlebotomy tube interference with nuclear magnetic resonance (NMR) lipoprotein subclass analysis. Clin Chim Acta. 2019;488:235–41.

    Article  CAS  PubMed  Google Scholar 

  31. Monsonis Centelles S, et al. Toward reliable lipoprotein particle predictions from NMR spectra of human blood: an interlaboratory ring test. Anal Chem. 2017;89(15):8004–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blake GJ, et al. Low-density lipoprotein particle concentration and size as determined by nuclear magnetic resonance spectroscopy as predictors of cardiovascular disease in women. Circulation. 2002;106(15):1930–7.

    Article  CAS  PubMed  Google Scholar 

  33. Witte DR, et al. Study of agreement between LDL size as measured by nuclear magnetic resonance and gradient gel electrophoresis. J Lipid Res. 2004;45(6):1069–76.

    Article  CAS  PubMed  Google Scholar 

  34. Caulfield MP, et al. Direct determination of lipoprotein particle sizes and concentrations by ion mobility analysis. Clin Chem. 2008;54(8):1307–16.

    Article  CAS  PubMed  Google Scholar 

  35. Okada M, et al. Low-density lipoprotein cholesterol can be chemically measured: a new superior method. J Lab Clin Med. 1998;132(3):195–201.

    Article  CAS  PubMed  Google Scholar 

  36. Hirano T, et al. A novel and simple method for quantification of small, dense LDL. J Lipid Res. 2003;44(11):2193–201.

    Article  CAS  PubMed  Google Scholar 

  37. Ivanova EA, et al. Small dense low-density lipoprotein as biomarker for atherosclerotic diseases. Oxidative Med Cell Longev. 2017;2017:1273042.

    Article  CAS  Google Scholar 

  38. Biochemistry NAoC. Emerging biomarkers for primary prevention of cardiovascular disease and stroke. AACC; 2009. https://www.aacc.org/science-and-practice/practice-guidelines/emerging-cv-risk-factors.

  39. Davidson MH, et al. Clinical utility of inflammatory markers and advanced lipoprotein testing: advice from an expert panel of lipid specialists. J Clin Lipidol. 2011;5(5):338–67.

    Article  PubMed  Google Scholar 

  40. Greenland P, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2010;122(25):e584–636.

    PubMed  Google Scholar 

  41. VAP-NT CHOLESTEROL TEST- 510(k) k062026, USFaD. Administration, Editor. 2007. https://www.accessdata.fda.gov/scripts/cdrh/devicesatfda/index.cfm?db=pmn&id=K062026.

  42. Administration FaD. LipoScience NMR LipoProfile-2 assay and NMR profiler instrument test system 510(k) k063841. USFaD. Administration, Editor. 2008. https://www.accessdata.fda.gov/cdrh_docs/pdf6/K063841.pdf.

  43. S LDL-EX SEIKEN – 501K – K161679, FaD. Administration, Editor. 2017. https://www.accessdata.fda.gov/cdrh_docs/pdf16/K161679.pdf.

  44. Hoogeveen RC, et al. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the atherosclerosis risk in communities (ARIC) study. Arterioscler Thromb Vasc Biol. 2014;34(5):1069–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ip S, et al. Systematic review: association of low-density lipoprotein subfractions with cardiovascular outcomes. Ann Intern Med. 2009;150(7):474–84.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mora S. Advanced lipoprotein testing and subfractionation are not (yet) ready for routine clinical use. Circulation. 2009;119(17):2396–404.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kjellmo CA, Hovland A, Lappegard KT. CVD risk stratification in the PCSK9 era: is there a role for LDL subfractions? Diseases. 2018;6(2):45.

    Article  PubMed Central  CAS  Google Scholar 

  48. Pokharel Y, et al. Association of low-density lipoprotein pattern with mortality after myocardial infarction: insights from the TRIUMPH study. J Clin Lipidol. 2017;11(6):1458–70. e4

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lawler PR, et al. Atherogenic lipoprotein determinants of cardiovascular disease and residual risk among individuals with low low-density lipoprotein cholesterol. J Am Heart Assoc. 2017;6(7):e005549.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mora S, et al. Atherogenic lipoprotein subfractions determined by ion mobility and first cardiovascular events after random allocation to high-intensity statin or placebo: the justification for the use of statins in prevention: an intervention trial evaluating Rosuvastatin (JUPITER) trial. Circulation. 2015;132(23):2220–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parish S, et al. Lipids and lipoproteins and risk of different vascular events in the MRC/BHF heart protection study. Circulation. 2012;125(20):2469–78.

    Article  CAS  PubMed  Google Scholar 

  52. Shiffman D, et al. LDL subfractions are associated with incident cardiovascular disease in the Malmo prevention project study. Atherosclerosis. 2017;263:287–92.

    Article  CAS  PubMed  Google Scholar 

  53. Hlatky MA, et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119(17):2408–16.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chait A, et al. Susceptibility of small, dense, low-density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B. Am J Med. 1993;94(4):350–6.

    Article  CAS  PubMed  Google Scholar 

  55. Karabina SA, et al. Distribution of PAF-acetylhydrolase activity in human plasma low-density lipoprotein subfractions. Biochim Biophys Acta. 1994;1213(1):34–8.

    Article  CAS  PubMed  Google Scholar 

  56. Galeano NF, et al. Small dense low density lipoprotein has increased affinity for LDL receptor-independent cell surface binding sites: a potential mechanism for increased atherogenicity. J Lipid Res. 1998;39(6):1263–73.

    CAS  PubMed  Google Scholar 

  57. Nordestgaard BG, Nielsen LB. Atherosclerosis and arterial influx of lipoproteins. Curr Opin Lipidol. 1994;5(4):252–7.

    Article  CAS  PubMed  Google Scholar 

  58. Schwartz GG, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.

    Article  CAS  PubMed  Google Scholar 

  59. Haase CL, et al. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab. 2012;97(2):E248–56.

    Article  CAS  PubMed  Google Scholar 

  60. Nicholls SJ, et al. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial. JAMA. 2011;306(19):2099–109.

    Article  CAS  PubMed  Google Scholar 

  61. Mora S, Glynn RJ, Ridker PM. High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. Circulation. 2013;128(11):1189–97.

    Article  CAS  PubMed  Google Scholar 

  62. Boekholdt SM, et al. Levels and changes of HDL cholesterol and apolipoprotein A-I in relation to risk of cardiovascular events among statin-treated patients: a meta-analysis. Circulation. 2013;128(14):1504–12.

    Article  CAS  PubMed  Google Scholar 

  63. Karathanasis SK, et al. The changing face of HDL and the best way to measure it. Clin Chem. 2017;63(1):196–210.

    Article  CAS  PubMed  Google Scholar 

  64. Pirillo A, Norata GD, Catapano AL. High-density lipoprotein subfractions—what the clinicians need to know. Cardiology. 2013;124(2):116–25.

    Article  CAS  PubMed  Google Scholar 

  65. Rizzo M, et al. Subfractions and subpopulations of HDL: an update. Curr Med Chem. 2014;21(25):2881–91.

    Article  CAS  PubMed  Google Scholar 

  66. Ronsein GE, Vaisar T. Inflammation, remodeling, and other factors affecting HDL cholesterol efflux. Curr Opin Lipidol. 2017;28(1):52–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Asztalos BF, et al. Influence of HDL particles on cell-cholesterol efflux under various pathological conditions. J Lipid Res. 2017;58(6):1238–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Matera R, et al. HDL particle measurement: comparison of 5 methods. Clin Chem. 2017;64:492–500.

    Article  PubMed  CAS  Google Scholar 

  69. Cavigiolio G, et al. The interplay between size, morphology, stability, and functionality of high-density lipoprotein subclasses. Biochemistry. 2008;47(16):4770–9.

    Article  CAS  PubMed  Google Scholar 

  70. Asztalos BF, et al. Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the veterans affairs HDL intervention trial. Arterioscler Thromb Vasc Biol. 2005;25(10):2185–91.

    Article  CAS  PubMed  Google Scholar 

  71. Martin SS, et al. HDL cholesterol subclasses, myocardial infarction, and mortality in secondary prevention: the lipoprotein investigators collaborative. Eur Heart J. 2015;36(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  72. El Khoudary SR, et al. Cholesterol efflux capacity and subclasses of HDL particles in healthy women transitioning through menopause. J Clin Endocrinol Metab. 2016;101(9):3419–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Meeusen JW. Comparing measures of HDL: on the right path with the wrong map. Clin Chem. 2018;64(3):424–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Meeusen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meeusen, J.W. (2021). Lipoprotein Subfractions in Clinical Practice. In: Davidson, M.H., Toth, P.P., Maki, K.C. (eds) Therapeutic Lipidology. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-56514-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56514-5_27

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-56513-8

  • Online ISBN: 978-3-030-56514-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics