Skip to main content

Integrating Data-Driven and Mechanistic Models of the Inflammatory Response in Sepsis and Trauma

  • Chapter
  • First Online:
Complex Systems and Computational Biology Approaches to Acute Inflammation

Abstract

Inflammation can drive both homeostasis and disease via dynamic, multidimensional, and multi-scale processes. The inflammatory response can be studied using multiplexed platforms for gathering biological data, but there is no straightforward means by which to deal with the consequent “data deluge” in order to glean basic insights and clinically useful applications. Systems approaches, including data-driven and mechanistic computational modeling, have been employed alone and in concert in order to study the acute inflammatory response in the settings of trauma/hemorrhage and sepsis. Through combined data-driven and mechanistic modeling based on such “meso-dimensional” datasets, computational models of acute inflammation applicable to multiple preclinical species as well as humans were generated. A key hypothesis derived from these studies is that inflammation may be regulated via direct or indirect positive feedback loops that control switching behavior between beneficial and detrimental inflammatory responses, with the former being self-resolving while the latter are self-sustaining, ultimately leading to multiple organ dysfunction and death. Self-resolving inflammation may occur when specific signals feedback in a positive fashion to drive anti-inflammatory responses, while pro-inflammatory signals remain below certain thresholds and within appropriate biological compartments. In contrast, self-amplifying, detrimental inflammation may occur when different signals feedback in a positive fashion to drive pro-inflammatory responses, setting in motion the positive feedback loop of inflammation → tissue damage/dysfunction → inflammation driven by damage-associated molecular pattern molecules. A third state that involves overly damped inflammatory responses and immunosuppression appears to drive organ dysfunction in a manner distinct from that observed in the context of overly amplified inflammation. These insights may drive a future generation of diagnostics and targeted, personalized therapies for acute inflammation in critical illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DAMP:

Damage-associated molecular pattern molecule

DBN:

Dynamic Bayesian network

GM-CSF:

Granulocyte-macrophage colony stimulating factor

IFN:

Interferon

IL:

Interleukin

IL-1ra:

Interleukin-1 receptor antagonist

IP-10:

IFN-γ-inducible protein of 10 kDa/CXCL10

MCP-1:

Monocyte chemotactic protein-1/CCL2

MIG:

Monokine induced by γ-interferon/CXCL9

MODS:

Multiple organ dysfunction syndrome

ODE:

Ordinary differential equation

PCA:

Principal component analysis

sIL-2rα:

Soluble IL-2 receptor α chain

SIRS:

Systemic inflammatory response syndrome

TBI:

Traumatic brain injury

TLR4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor-α

References

  1. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435

    Article  CAS  Google Scholar 

  2. Kotas ME, Medzhitov R (2015) Homeostasis, inflammation, and disease susceptibility. Cell 160(5):816–827

    Article  CAS  Google Scholar 

  3. Namas R, Zamora R, Namas R, An G, Doyle J, Dick TE et al (2012) Sepsis: something old, something new, and a systems view. J Crit Care 27:314.e1–314.e11

    Article  Google Scholar 

  4. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M et al (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810

    Article  CAS  Google Scholar 

  5. Buchman TG, Simpson SQ, Sciarretta KL, Finne KP, Sowers N, Collier M et al (2020) Sepsis among medicare beneficiaries: 1. The burdens of sepsis, 2012-2018. Crit Care Med 48(3):276–288

    Article  Google Scholar 

  6. Dwyer-Lindgren L, Bertozzi-Villa A, Stubbs RW, Morozoff C, Kutz MJ, Huynh C et al (2016) US County-level trends in mortality rates for major causes of death, 1980-2014. JAMA 316(22):2385–2401

    Article  Google Scholar 

  7. Lefering R, Paffrath T, Bouamra O, Coats TJ, Woodford M, Jenks T et al (2012) Epidemiology of in-hospital trauma deaths. Eur J Trauma Emerg Surg 38(1):3–9

    Article  CAS  Google Scholar 

  8. Dick TE, Molkov Y, Nieman G, Hsieh Y, Jacono FJ, Doyle J et al (2012) Linking inflammation and cardiorespiratory variability in sepsis via computational modeling. Front Physiol 3:222

    Article  Google Scholar 

  9. Marshall JC (2001) Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 29(7 Suppl):S99–S106

    Article  CAS  Google Scholar 

  10. Jarrar D, Chaudry IH, Wang P (1999) Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches (review). Int J Mol Med 4(6):575–583

    CAS  Google Scholar 

  11. Vodovotz Y, Csete M, Bartels J, Chang S, An G (2008) Translational systems biology of inflammation. PLoS Comput Biol 4:1–6

    Article  CAS  Google Scholar 

  12. Vodovotz Y, An G (2009) Systems biology and inflammation. In: Yan Q (ed) Systems biology in drug discovery and development: methods and protocols. Springer Science & Business Media, Totowa, pp 181–201

    Google Scholar 

  13. Vodovotz Y (2010) Translational systems biology of inflammation and healing. Wound Repair Regen 18(1):3–7

    Article  Google Scholar 

  14. Namas R, Mi Q, Namas R, Almahmoud K, Zaaqoq A, Abdul Malak O et al (2015) Insights into the role of chemokines, damage-associated molecular patterns, and lymphocyte-derived mediators from computational models of trauma-induced inflammation. Antiox Redox Signaling 10:1370–1387

    Article  CAS  Google Scholar 

  15. Waxman K (1996) Shock: ischemia, reperfusion, and inflammation. New Horiz 4(2):153–160

    CAS  Google Scholar 

  16. Peitzman AB, Billiar TR, Harbrecht BG, Kelly E, Udekwu AO, Simmons RL (1995) Hemorrhagic shock. Curr Probl Surg 32(11):925–1002

    Article  CAS  Google Scholar 

  17. Namas R, Ghuma A, Torres A, Polanco P, Gomez H, Barclay D et al (2009) An adequately robust early TNF-α response is a hallmark of survival following trauma/hemorrhage. PLoS One 4(12):e8406

    Article  CAS  Google Scholar 

  18. Nathan C (2002) Points of control in inflammation. Nature 420(6917):846–852

    Article  CAS  Google Scholar 

  19. Mi Q, Constantine G, Ziraldo C, Solovyev A, Torres A, Namas R et al (2011) A dynamic view of trauma/hemorrhage-induced inflammation in mice: principal drivers and networks. PLoS One 6:e19424

    Article  CAS  Google Scholar 

  20. Abboud AN, Namas RA, Ramadan M, Mi Q, Almahmoud K, Abdul-Malak O et al (2016) Computational analysis supports an early, type 17 cell-associated divergence of blunt trauma survival and mortality. Crit Care Med 44:e1074–e1081

    Article  CAS  Google Scholar 

  21. Almahmoud K, Abboud A, Namas RA, Zamora R, Sperry J, Peitzman AB et al (2019) Computational evidence for an early, amplified systemic inflammation program in polytrauma patients with severe extremity injuries. PLoS One 14(6):e0217577

    Article  CAS  Google Scholar 

  22. Chow CC, Clermont G, Kumar R, Lagoa C, Tawadrous Z, Gallo D et al (2005) The acute inflammatory response in diverse shock states. Shock 24:74–84

    Article  CAS  Google Scholar 

  23. Lagoa CE, Bartels J, Baratt A, Tseng G, Clermont G, Fink MP et al (2006) The role of initial trauma in the host’s response to injury and hemorrhage: Insights from a comparison of mathematical simulations and hepatic transcriptomic analysis. Shock 26:592–600

    Article  CAS  Google Scholar 

  24. Reynolds A, Rubin J, Clermont G, Day J, Vodovotz Y, Ermentrout GB (2006) A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J Theor Biol 242:220–236

    Article  CAS  Google Scholar 

  25. Torres A, Bentley T, Bartels J, Sarkar J, Barclay D, Namas R et al (2009) Mathematical modeling of post-hemorrhage inflammation in mice: studies using a novel, computer-controlled, closed-loop hemorrhage apparatus. Shock 32:172–178

    Article  Google Scholar 

  26. Mi Q, Li NYK, Ziraldo C, Ghuma A, Mikheev M, Squires R et al (2010) Translational systems biology of inflammation: potential applications to personalized medicine. Pers Med 7:549–559

    Article  Google Scholar 

  27. Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4(3):a006049

    Article  CAS  Google Scholar 

  28. Beutler B, Cerami A (1989) The biology of cachectin/TNF—a primary mediator of the host response. Annu Rev Immunol 7:625–655

    Article  CAS  Google Scholar 

  29. Cavaillon JM (1994) Cytokines and macrophages. Biomed Pharmacother 48(10):445–453

    Article  CAS  Google Scholar 

  30. Kox WJ, Volk T, Kox SN, Volk HD (2000) Immunomodulatory therapies in sepsis. Intensive Care Med 26(Suppl 1):S124–S1S8

    Article  Google Scholar 

  31. Dinarello CA (2000) Proinflammatory cytokines. Chest 118(2):503–508

    Article  CAS  Google Scholar 

  32. Pinsky MR (2001) Sepsis: a pro- and anti-inflammatory disequilibrium syndrome. Contrib Nephrol 132:354–366

    Article  CAS  Google Scholar 

  33. Baugh JA, Bucala R (2001) Mechanisms for modulating TNF alpha in immune and inflammatory disease. Curr Opin Drug Discov Devel 4(5):635–650

    CAS  Google Scholar 

  34. Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296(5573):1634–1635

    Article  CAS  Google Scholar 

  35. An G, Nieman G, Vodovotz Y (2012) Computational and systems biology in trauma and sepsis: current state and future perspectives. Int J Burns Trauma 2:1–10

    Google Scholar 

  36. An G, Nieman G, Vodovotz Y (2012) Toward computational identification of multiscale tipping points in multiple organ failure. Ann Biomed Eng 40:2412–2424

    Article  Google Scholar 

  37. Kumar R, Clermont G, Vodovotz Y, Chow CC (2004) The dynamics of acute inflammation. J Theor Biol 230:145–155

    Article  CAS  Google Scholar 

  38. Clermont G, Bartels J, Kumar R, Constantine G, Vodovotz Y, Chow C (2004) In silico design of clinical trials: a method coming of age. Crit Care Med 32:2061–2070

    Article  Google Scholar 

  39. Day J, Rubin J, Vodovotz Y, Chow CC, Reynolds A, Clermont G (2006) A reduced mathematical model of the acute inflammatory response: II. Capturing scenarios of repeated endotoxin administration. J Theor Biol 242:237–256

    Article  CAS  Google Scholar 

  40. Prince JM, Levy RM, Bartels J, Baratt A, Kane JM III, Lagoa C et al (2006) In silico and in vivo approach to elucidate the inflammatory complexity of CD14-deficient mice. Mol Med 12:88–96

    Article  CAS  Google Scholar 

  41. Mi Q, Rivière B, Clermont G, Steed DL, Vodovotz Y (2007) Agent-based model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-β1. Wound Rep Reg 15:617–682

    Article  Google Scholar 

  42. Kumar R, Chow CC, Bartels J, Clermont G, Vodovotz Y (2008) A mathematical simulation of the inflammatory response to anthrax infection. Shock 29:104–111

    Article  Google Scholar 

  43. Li NYK, Verdolini K, Clermont G, Mi Q, Hebda PA, Vodovotz Y (2008) A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS One 3:e2789

    Article  CAS  Google Scholar 

  44. Daun S, Rubin J, Vodovotz Y, Roy A, Parker R, Clermont G (2008) An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: results from parameter space reduction. J Theor Biol 253:843–853

    Article  CAS  Google Scholar 

  45. Rivière B, Epshteyn Y, Swigon D, Vodovotz Y (2009) A simple mathematical model of signaling resulting from the binding of lipopolysaccharide with toll-like receptor 4 demonstrates inherent preconditioning behavior. Math Biosci 217:19–26

    Article  CAS  Google Scholar 

  46. Arciero J, Rubin J, Upperman J, Vodovotz Y, Ermentrout GB (2010) Using a mathematical model to analyze the role of probiotics and inflammation in necrotizing enterocolitis. PLoS One 5:e10066

    Article  CAS  Google Scholar 

  47. Li NYK, Vodovotz Y, Hebda PA, Verdolini K (2010) Biosimulation of inflammation and healing in surgically injured vocal folds. Ann Otol Rhinol Laryngol 119:412–423

    Article  Google Scholar 

  48. Brown BN, Price IM, Toapanta FR, Dealmeida DR, Wiley CA, Ross TM et al (2011) An agent-based model of inflammation and fibrosis following particulate exposure in the lung. Math Biosci. 231:186–196

    Article  CAS  Google Scholar 

  49. Li NYK, Vodovotz Y, Kim KH, Mi Q, Hebda PA, Verdolini AK (2011) Biosimulation of acute phonotrauma: an extended model. Laryngoscope 121:2418–2428

    Article  Google Scholar 

  50. Nieman K, Brown D, Sarkar J, Kubiak B, Ziraldo C, Vieau C et al (2012) A two-compartment mathematical model of endotoxin-induced inflammatory and physiologic alterations in swine. Crit Care Med 40:1052–1063

    Article  Google Scholar 

  51. Zamora R, Azhar N, Namas R, Metukuri MR, Clermont T, Gladstone C et al (2012) Identification of a novel pathway of TGF-beta1 regulation by extracellular NAD+ in mouse macrophages: in vitro and in silico studies. J Biol Chem 287:31003–31014

    Article  CAS  Google Scholar 

  52. Solovyev A, Mi Q, Tzen Y-T, Brienza D, Vodovotz Y (2013) Hybrid equation-/agent-based model of ischemia-induced hyperemia and pressure ulcer formation predicts greater propensity to ulcerate in subjects with spinal cord injury. PLoS Comp Biol 9:e1003070

    Article  CAS  Google Scholar 

  53. Namas RA, Bartels J, Hoffman R, Barclay D, Billiar TR, Zamora R et al (2013) Combined in silico, in vivo, and in vitro studies shed insights into the acute inflammatory response in middle-aged mice. PLoS One 8:e67419

    Article  CAS  Google Scholar 

  54. Price I, Ermentrout B, Zamora R, Wang B, Azhar N, Mi Q et al (2013) In vivo, in vitro, and in silico studies suggest a conserved immune module that may regulate malaria parasite transmission from mammals to mosquitoes. J Theor Biol 334:173–186

    Article  CAS  Google Scholar 

  55. Dutta-Moscato J, Solovyev A, Mi Q, Nishikawa T, Soto-Gutierrez A, Fox IJ et al (2014) A multiscale agent-based in silico model of liver fibrosis progression. Front Bioeng Biotechnol 2:1–10

    Article  Google Scholar 

  56. Mathew S, Bartels J, Banerjee I, Vodovotz Y (2014) Global sensitivity analysis of a mathematical model of acute inflammation identifies nonlinear dependence of cumulative tissue damage on host interleukin-6 responses. J Theor Biol 358c:132–148

    Article  CAS  Google Scholar 

  57. Brown D, Namas RA, Almahmoud K, Zaaqoq A, Sarkar J, Barclay DA et al (2015) Trauma in silico: individual-specific mathematical models and virtual clinical populations. Sci Transl Med 7:285ra61

    Article  CAS  Google Scholar 

  58. Ziraldo C, Solovyev A, Allegretti A, Krishnan S, Henzel MK, Sowa GA et al (2015) A computational, tissue-realistic model of pressure ulcer formation in individuals with spinal cord injury. PLoS Comput Biol 11(6):e1004309

    Article  CAS  Google Scholar 

  59. Hussain F, Langmead CJ, Mi Q, Dutta-Mostaco J, Vodovotz Y, Jha S (2015) Parameter discovery for stochastic computational models in systems biology using Bayesian model checking. BMC Bioinform 16(Suppl 17):S8

    Article  Google Scholar 

  60. Abboud A, Mi Q, Puccio A, Okonkwo D, Buliga M, Constantine G et al (2016) Inflammation following traumatic brain injury in humans: insights from data-driven and mechanistic models into survival and death. Front Pharmacol 7:342

    Article  CAS  Google Scholar 

  61. Complex systems and computational biology approaches to acute inflammation. Springer, New York; 2013

    Google Scholar 

  62. An G, Vodovotz Y (2014) Translational systems biology: concepts and practice for the future of biomedical research. Elsevier, New York

    Google Scholar 

  63. Alber M, Buganza Tepole A, Cannon WR, De S, Dura-Bernal S, Garikipati K et al (2019) Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digital Med 2:115

    Article  Google Scholar 

  64. Corral-Acero J, Margara F, Marciniak M, Rodero C, Loncaric F, Feng Y et al (2020) The ‘digital twin’ to enable the vision of precision cardiology. Eur Heart J

    Google Scholar 

  65. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    Article  CAS  Google Scholar 

  66. Mesarovic MD, Sreenath SN, Keene JD (2004) Search for organising principles: understanding in systems biology. Syst Biol (Stevenage) 1(1):19–27

    Article  CAS  Google Scholar 

  67. Janes KA, Yaffe MB (2006) Data-driven modelling of signal-transduction networks. Nat Rev Mol Cell Biol 7(11):820–828

    Article  CAS  Google Scholar 

  68. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    Article  CAS  Google Scholar 

  69. Arkin AP, Schaffer DV (2011) Network news: innovations in 21st century systems biology. Cell 144(6):844–849

    Article  CAS  Google Scholar 

  70. Constantine G, Buliga M, Vodovotz Y, Bohnen N, Clermont G (2010) Time varying patterns of organ failure. Int J Contemp Math Sci 5:2263–2272

    Google Scholar 

  71. Mac NR (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9(5):655–671

    Article  Google Scholar 

  72. Chinnaiyan AM, Huber-Lang M, Kumar-Sinha C, Barrette TR, Shankar-Sinha S, Sarma VJ et al (2001) Molecular signatures of sepsis: multiorgan gene expression profiles of systemic inflammation. Am J Pathol 159(4):1199–1209

    Article  CAS  Google Scholar 

  73. Yu SL, Chen HW, Yang PC, Peck K, Tsai MH, Chen JJ et al (2004) Differential gene expression in gram-negative and gram-positive sepsis. Am J Respir Crit Care Med 169(10):1135–1143

    Article  Google Scholar 

  74. Brownstein BH, Logvinenko T, Lederer JA, Cobb JP, Hubbard WJ, Chaudry IH et al (2006) Commonality and differences in leukocyte gene expression patterns among three models of inflammation and injury. Physiol Genomics 24(3):298–309

    Article  CAS  Google Scholar 

  75. Edmonds RD, Vodovotz Y, Lagoa C, Dutta-Moscato J, Ching Y, Fink MP et al (2011) Transcriptomic response of murine liver to severe injury and hemorrhagic shock: a dual platform microarray analysis. Physiol Genomics 43:1170–1183

    Article  CAS  Google Scholar 

  76. Sweeney TE, Azad TD, Donato M, Haynes WA, Perumal TM, Henao R et al (2018) Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters. Crit Care Med 46(6):915–925

    Article  Google Scholar 

  77. Scicluna BP, van Vught LA, Zwinderman AH, Wiewel MA, Davenport EE, Burnham KL et al (2017) Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med 5(10):816–826

    Article  Google Scholar 

  78. Cole E, Gillespie S, Vulliamy P, Brohi K (2020) Multiple organ dysfunction after trauma. Br J Surg 107(4):402–412

    Article  CAS  Google Scholar 

  79. Seymour CW, Kennedy JN, Wang S, Chang CH, Elliott CF, Xu Z et al (2019) Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA 321(20):2003–2017

    Article  CAS  Google Scholar 

  80. Liu D, Namas RA, Vodovotz Y, Peitzman AB, Simmons RL, Yuan H et al (2020) Unsupervised clustering analysis based on MODS severity identifies four distinct organ dysfunction patterns in severely injured blunt trauma patients. Front Med 7(46):46

    Article  Google Scholar 

  81. Namas R, Namas R, Lagoa C, Barclay D, Mi Q, Zamora R et al (2012) Hemoadsorption reprograms inflammation in experimental gram-negative septic fibrin peritonitis: insights from in vivo and in silico studies. Mol Med 18:1366–1374

    Article  CAS  Google Scholar 

  82. Namas R, Almahmoud K, Mi Q, Ghuma A, Namas R, Zaaqoq A et al (2016) Individual-specific principal component analysis of circulating inflammatory mediators predicts early organ dysfunction in trauma patients. J Crit Care 36:146–153

    Article  CAS  Google Scholar 

  83. Zamora R, Korff S, Mi Q, Barclay D, Yin J, Schimunek L et al (2018) A computational analysis of dynamic, multi-organ inflammatory crosstalk induced by endotoxin in mice. PLoS Comput Biol 6:e100658

    Google Scholar 

  84. Constantine G, Buliga M, Mi Q, Constantine F, Abboud A, Zamora R et al (2016) Dynamic profiling: modeling the dynamics of inflammation and predicting outcomes in traumatic brain injury patients. Front Pharmacol 7:383

    Article  Google Scholar 

  85. Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T (2002) Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care 8(2):101–105

    Article  Google Scholar 

  86. Namas R, Ghuma A, Hermus L, Zamora R, Okonkwo DO, Billiar TR et al (2009) The acute inflammatory response in trauma/hemorrhage and traumatic brain injury: current state and emerging prospects. Libyan J Med 4:97–103

    Article  CAS  Google Scholar 

  87. Gao J, Zheng Z (2015) Development of prognostic models for patients with traumatic brain injury: a systematic review. Int J Clin Exp Med 8(11):19881–19885

    CAS  Google Scholar 

  88. Kunkel SL, Strieter RM, Chensue SW, Basha M, Standiford T, Ham J et al (1990) Tumor necrosis factor-alpha, interleukin-8 and chemotactic cytokines. Prog Clin Biol Res 349:433–444

    CAS  Google Scholar 

  89. Elias JA, Freundlich B, Kern JA, Rosenbloom J (1990) Cytokine networks in the regulation of inflammation and fibrosis in the lung. Chest 97(6):1439–1445

    Article  CAS  Google Scholar 

  90. Miossec P (2004) An update on the cytokine network in rheumatoid arthritis. Curr Opin Rheumatol 16(3):218–222

    Article  CAS  Google Scholar 

  91. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037

    Article  CAS  Google Scholar 

  92. Stavitsky AB (2007) The innate immune response to infection, toxins and trauma evolved into networks of interactive, defensive, reparative, regulatory, injurious and pathogenic pathways. Mol Immunol 44(11):2787–2799

    Article  CAS  Google Scholar 

  93. Vasto S, Candore G, Balistreri CR, Caruso M, Colonna-Romano G, Grimaldi MP et al (2007) Inflammatory networks in ageing, age-related diseases and longevity. Mech Ageing Dev 128(1):83–91

    Article  CAS  Google Scholar 

  94. Foteinou PT, Yang E, Androulakis IP (2009) Networks, biology and systems engineering: a case study in inflammation. Comput Chem Eng 33(12):2028–2041

    Article  CAS  Google Scholar 

  95. Alexopoulos LG, Saez-Rodriguez J, Cosgrove BD, Lauffenburger DA, Sorger PK (2010) Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes. Mol Cell Proteomics 9(9):1849–1865

    Article  CAS  Google Scholar 

  96. Sachdev U, Vodovotz L, Bitner J, Barclay D, Zamora R, Yin J et al (2018) Suppressed networks of inflammatory mediators characterize chronic venous insufficiency. J Vasc Surg Venous Lymphat Disord 6(3):358–366

    Article  Google Scholar 

  97. Zamora R, Vodovotz Y, Mi Q, Barclay D, Yin J, Horslen S et al (2017) Data-driven modeling for precision medicine in pediatric acute liver failure. Mol Med 22:821–829

    Article  CAS  Google Scholar 

  98. Husmeier D (2003) Reverse engineering of genetic networks with Bayesian networks. Biochem Soc Trans 31(Pt 6):1516–1518

    Article  CAS  Google Scholar 

  99. Jiang D, Tang C, Zhang A (2004) Cluster analysis for gene expression data: a survey. IEEE Trans Knowled Data Eng 16:1370–1386

    Article  Google Scholar 

  100. Shah A, Tenzen T, McMahon AP, Woolf PJ (2009) Using mechanistic Bayesian networks to identify downstream targets of the Sonic Hedgehog pathway. BMC Bioinform 10:433

    Article  CAS  Google Scholar 

  101. Rawool SB, Venkatesh KV (2007) Steady state approach to model gene regulatory networks—simulation of microarray experiments. Biosystems 90(3):636–655

    Article  CAS  Google Scholar 

  102. Namas RA, Vodovotz Y, Almahmoud K, Abdul-Malak O, Zaaqoq A, Namas R et al (2016) Temporal patterns of circulating inflammation biomarker networks differentiate susceptibility to nosocomial infection following blunt trauma in humans. Ann Surg 263:191–198

    Article  Google Scholar 

  103. Abdul-Malak O, Vodovotz Y, Zaaqoq A, Guardado J, Almahmoud K, Yin J et al (2016) Elevated admission base deficit is associated with a complex dynamic network of systemic inflammation which drives clinical trajectories in blunt trauma patients. Mediat Inflamm 2016:7950374. https://doi.org/10.1155/2016/

    Article  Google Scholar 

  104. Zaaqoq AM, Namas RA, Abdul-Malak O, Almahmoud K, Barclay D, Yin J et al (2019) Diurnal variation in systemic acute inflammation and clinical outcomes following severe blunt trauma. Front Immunol 10:2699

    Article  CAS  Google Scholar 

  105. Grzegorczyk M, Husmeier D (2011) Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes. Bioinformatics 27(5):693–699

    Article  CAS  Google Scholar 

  106. Zaaqoq AM, Namas R, Almahmoud K, Azhar N, Mi Q, Zamora R et al (2014) Inducible protein-10, a potential driver of neurally-controlled IL-10 and morbidity in human blunt trauma. Crit Care Med 42:1487–1497

    Article  CAS  Google Scholar 

  107. Almahmoud K, Namas RA, Abdul-Malak O, Zaaqoq AM, Zamora R, Zuckerbraun BS et al (2015) Impact of injury severity on dynamic inflammation networks following blunt trauma. Shock 44:105–109

    Article  Google Scholar 

  108. Almahmoud K, Namas RA, Zaaqoq AM, Abdul-Malak O, Namas R, Zamora R et al (2015) Prehospital hypotension is associated with altered inflammation dynamics and worse outcomes following blunt trauma in humans. Crit Care Med 43:1395–1404

    Article  CAS  Google Scholar 

  109. Zettel K, Korff S, Zamora R, Morelli AE, Darwiche S, Loughran PA et al (2017) Toll-like receptor 4 on both myeloid cells and dendritic cells is required for systemic inflammation and organ damage after hemorrhagic shock with tissue trauma in mice. Front Immunol 8:1672

    Article  CAS  Google Scholar 

  110. Ziraldo C, Vodovotz Y, Namas RA, Almahmoud K, Tapias V, Mi Q et al (2013) Central role for MCP-1/CCL2 in injury-induced inflammation revealed by in vitro, in silico, and clinical studies. PLoS One 8(12):e79804

    Article  CAS  Google Scholar 

  111. Faeder JR (2011) Toward a comprehensive language for biological systems. BMC Biol 9:68

    Article  Google Scholar 

  112. Angeli D, Ferrell J, Sontag ED (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci 101(7):1822–1827

    Article  CAS  Google Scholar 

  113. Clermont G, Chow C, Kumar R, Vodovotz Y (2001) Mathematical simulation of the innate immune response. Crit Care Med 29(Suppl):A111

    Google Scholar 

  114. Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I (2006) Bistability in apoptosis: roles of Bax, Bcl-2 and mitochondrial permeability transition pores. BiophysJ 90:1546–1559

    Article  CAS  Google Scholar 

  115. Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    Article  Google Scholar 

  116. Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295(5560):1664–1669

    Article  CAS  Google Scholar 

  117. Kurata H, El-Samad H, Iwasaki R, Ohtake H, Doyle JC, Grigorova I et al (2006) Module-based analysis of robustness tradeoffs in the heat shock response system. PLoS Comput Biol 2(7):e59

    Article  CAS  Google Scholar 

  118. An G, Hunt CA, Clermont G, Neugebauer E, Vodovotz Y (2007) Challenges and rewards on the road to translational systems biology in acute illness: four case reports from interdisciplinary teams. J Crit Care 22:169–175

    Article  Google Scholar 

  119. An G, Faeder J, Vodovotz Y (2008) Translational systems biology: introduction of an engineering approach to the pathophysiology of the burn patient. J Burn Care Res 29:277–285

    Article  Google Scholar 

  120. An G (2004) In-silico experiments of existing and hypothetical cytokine-directed clinical trials using agent based modeling. Crit Care Med 32:2050–2060

    Article  CAS  Google Scholar 

  121. Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2009) Modeling endotoxin-induced systemic inflammation using an indirect response approach. Math Biosci 217:27–42

    Article  CAS  Google Scholar 

  122. Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2009) In silico simulation of corticosteroids effect on an NFkB- dependent physicochemical model of systemic inflammation. PLoS One 4(3):e4706

    Article  CAS  Google Scholar 

  123. An G, Faeder JR (2009) Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning. Math Biosci 217:53–63

    Article  CAS  Google Scholar 

  124. An G (2009) A model of TLR4 signaling and tolerance using a qualitative, particle event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC). Math Biosci 217:43–52

    Article  CAS  Google Scholar 

  125. Dong X, Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2010) Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes. PLoS One 5(2):e9249

    Article  CAS  Google Scholar 

  126. Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2010) Multiscale model for the assessment of autonomic dysfunction in human endotoxemia. Physiol Genomics 42(1):5–19

    Article  CAS  Google Scholar 

  127. Scheff JD, Calvano SE, Lowry SF, Androulakis IP (2010) Modeling the influence of circadian rhythms on the acute inflammatory response. J Theor Biol 264(3):1068–1076

    Article  Google Scholar 

  128. Foteinou PT, Calvano SE, Lowry SF, Androulakis IP (2011) A physiological model for autonomic heart rate regulation in human endotoxemia. Shock 35:229–239

    Article  Google Scholar 

  129. Yang Q, Calvano SE, Lowry SF, Androulakis IP (2011) A dual negative regulation model of toll-like receptor 4 signaling for endotoxin preconditioning in human endotoxemia. Math Biosci 232(2):151–163

    Article  CAS  Google Scholar 

  130. Kim M, Christley S, Alverdy JC, Liu D, An G (2012) Immature oxidative stress management as a unifying principle in the pathogenesis of necrotizing enterocolitis: insights from an agent-based model. Surg Infect 13(1):18–32

    Article  Google Scholar 

  131. Koch-Nolte F, Fischer S, Haag F, Ziegler M (2011) Compartmentation of NAD+-dependent signalling. FEBS Lett 585(11):1651–1656

    Article  CAS  Google Scholar 

  132. Okin D, Medzhitov R (2012) Evolution of inflammatory diseases. Curr Biol 22(17):R733–R740

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Vodovotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vodovotz, Y. (2021). Integrating Data-Driven and Mechanistic Models of the Inflammatory Response in Sepsis and Trauma. In: Vodovotz, Y., An, G. (eds) Complex Systems and Computational Biology Approaches to Acute Inflammation. Springer, Cham. https://doi.org/10.1007/978-3-030-56510-7_4

Download citation

Publish with us

Policies and ethics