Skip to main content

Agent-Based Modeling in Translational Systems Biology

  • Chapter
  • First Online:
Complex Systems and Computational Biology Approaches to Acute Inflammation

Abstract

Agent-based modeling is an object-oriented, discrete event, population-focused method for the computational representation of dynamic systems. Agent-based models (ABMs) treat systems as aggregates of populations of interacting components governed by rules. This means of system representation allows ABMs to map well to how biological knowledge is represented and communicated. As a result, agent-based modeling is an intuitive means by which biomedical researchers can represent their knowledge in dynamic computational form, and in so doing lower the threshold for the general biological researcher to engage in computational modeling. ABMs are particularly suited for representing the behavior of populations of cells (i.e., “cell-as-agents”), but have also been used to model lower level processes, such as molecular interactions when spatial and structural properties are involved, as well as higher level systems, such as in human populations in epidemiological studies. For purposes of its use in Translational Systems Biology, we will focus on the use of cell/tissue-as-agent ABMs and demonstrate how agent-based modeling can serve as an integrating framework for dynamic knowledge representation of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An G (2010) Closing the scientific loop: bridging correlation and causality in the petaflop age. Sci Transl Med 2(41):41ps34

    Article  Google Scholar 

  2. An G et al (2009) Agent-based models in translational systems biology. Wiley Interdiscip Rev Syst Biol Med 1(2):159–171. https://doi.org/10.1002/wsbm.45

    Article  CAS  Google Scholar 

  3. Bankes SC (2002) Agent-based modeling: a revolution? Proc Natl Acad Sci U S A 99(Suppl 3):7199–7200

    Article  CAS  Google Scholar 

  4. Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci U S A 99(Suppl 3):7280–7287

    Article  CAS  Google Scholar 

  5. Hunt CA et al (2009) At the biological modeling and simulation frontier. Pharm Res 26:2369

    Article  CAS  Google Scholar 

  6. Walker DC, Southgate J (2009) The virtual cell—a candidate co-ordinator for ‘middle-out’ modeling of biological systems. Brief Bioinform 10(4):450–461

    Article  CAS  Google Scholar 

  7. Zhang L, Athale CA, Deisboeck TS (2007) Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J Theor Biol 244(1):96–107

    Article  CAS  Google Scholar 

  8. Santoni D, Pedicini M, Castiglione F (2008) Implementation of a regulatory gene network to simulate the TH1/2 differentiation in an agent-based model of hypersensitivity reactions. Bioinformatics 24(11):1374–1380

    Article  CAS  Google Scholar 

  9. Fallahi-Sichani M et al (2011) Multiscale computational modeling reveals a critical role for TNF-alpha receptor 1 dynamics in tuberculosis granuloma formation. J Immunol 186(6):3472–3483

    Article  CAS  Google Scholar 

  10. An G (2009) Dynamic knowledge representation using agent-based modeling: ontology instantiation and verification of conceptual models. Methods Mol Biol 500:445–468

    Article  CAS  Google Scholar 

  11. An G (2006) Concepts for developing a collaborative in silico model of the acute inflammatory response using agent-based modeling. J Crit Care 21(1):105–110; discussion 110–1.

    Article  Google Scholar 

  12. An G (2008) Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation. Theor Biol Med Model 5(1):11

    Article  CAS  Google Scholar 

  13. Kirschner DE et al (2007) Toward a multiscale model of antigen presentation in immunity. Immunol Rev 216:93–118

    Article  CAS  Google Scholar 

  14. Christley S, Alber MS, Newman SA (2007) Patterns of mesenchymal condensation in a multiscale, discrete stochastic model. PLoS Comput Biol 3(4):e76

    Article  CAS  Google Scholar 

  15. Gardner M (1970) Mathematical games: the fantastic combinations of John Conway’s new solitare game of “life”. Sci Am 223:120–123

    Article  Google Scholar 

  16. Kauffman S, Weinberger E (1989) The N-K model of the application to the maturation of the immune response. J Theor Biol 141(2):211–245

    Article  CAS  Google Scholar 

  17. Graner F, Glazier J (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69(13):2013–2016

    Article  CAS  Google Scholar 

  18. Engelberg JA, Ropella GE, Hunt CA (2008) Essential operating principles for tumor spheroid growth. BMC Syst Biol 2(1):110

    Article  CAS  Google Scholar 

  19. Hunt CA et al (2006) Physiologically based synthetic models of hepatic disposition. J Pharmacokinet Pharmacodyn 33(6):737–772

    Article  Google Scholar 

  20. Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model in computer graphics. In: SIGGRAPH ’87

    Google Scholar 

  21. Lipniacki T et al (2006) Stochastic regulation in early immune response. Biophys J 90(3):725–742

    Article  CAS  Google Scholar 

  22. Lipniacki T et al (2006) Transcriptional stochasticity in gene expression. J Theor Biol 238(2):348–367

    Article  CAS  Google Scholar 

  23. Vodovotz Y et al (2007) Evidence-based modeling of critical illness: an initial consensus from the Society for Complexity in acute illness. J Crit Care 22(1):77–84

    Article  Google Scholar 

  24. Grimm V et al (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991

    Article  CAS  Google Scholar 

  25. An G (2009) A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC). Math Biosci 217(1):43–52

    Article  CAS  Google Scholar 

  26. Metzcar J et al (2019) A review of cell-based computational modeling in cancer biology. JCO Clin Cancer Inform 3:1–13

    Article  Google Scholar 

  27. An G (2001) Agent-based computer simulation and sirs: building a bridge between basic science and clinical trials. Shock 16(4):266–273

    Article  CAS  Google Scholar 

  28. An G (2004) In silico experiments of existing and hypothetical cytokine-directed clinical trials using agent-based modeling. Crit Care Med 32(10):2050–2060

    Article  CAS  Google Scholar 

  29. Cockrell C, An G (2017) Sepsis reconsidered: identifying novel metrics for behavioral landscape characterization with a high-performance computing implementation of an agent-based model. bioRxiv:141804

    Google Scholar 

  30. Cockrell RC, An G (2018) Examining the controllability of sepsis using genetic algorithms on an agent-based model of systemic inflammation. PLoS Comput Biol 14(2):e1005876

    Article  CAS  Google Scholar 

  31. Thorne BC et al (2006) Modeling blood vessel growth and leukocyte extravasation in ischemic injury: an integrated agent-based and finite element analysis approach. J Crit Care 21(4):346

    Article  Google Scholar 

  32. Tang J, Ley KF, Hunt CA (2007) Dynamics of in silico leukocyte rolling, activation, and adhesion. BMC Syst Biol 1:14

    Article  CAS  Google Scholar 

  33. Tang J et al (2004) Simulating leukocyte-venule interactions—a novel agent-oriented approach. Conf Proc IEEE Eng Med Biol Soc 7:4978–4981

    Google Scholar 

  34. Bailey AM, Thorne BC, Peirce SM (2007) Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann Biomed Eng 35(6):916–936

    Article  Google Scholar 

  35. Bailey AM et al (2009) Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on P-selectin. PLoS Comput Biol 5(2):e1000294

    Article  CAS  Google Scholar 

  36. Jeong E et al (2007) Cell system ontology: representation for modeling, visualizing and simulating biological pathways. In Silico Biol 7(6):623–638

    CAS  Google Scholar 

  37. Walker DC et al (2004) Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Trans Nanobioscience 3(3):153–163

    Article  CAS  Google Scholar 

  38. Adra S et al (2010) Development of a three dimensional multiscale computational model of the human epidermis. PLoS One 5(1):e8511

    Article  CAS  Google Scholar 

  39. Broderick G et al (2005) A life-like virtual cell membrane using discrete automata. In Silico Biol 5(2):163–178

    CAS  Google Scholar 

  40. Pogson M et al (2008) Introducing spatial information into predictive NF-kappaB modelling—an agent-based approach. PLoS One 3(6):e2367

    Article  CAS  Google Scholar 

  41. Pogson M et al (2006) Formal agent-based modelling of intracellular chemical interactions. Biosystems 85(1):37–45

    Article  CAS  Google Scholar 

  42. Ridgway D et al (2008) Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophys J 94(10):3748–3759

    Article  CAS  Google Scholar 

  43. Troisi A, Wong V, Ratner MA (2005) An agent-based approach for modeling molecular self-organization. Proc Natl Acad Sci U S A 102(2):255–260

    Article  CAS  Google Scholar 

  44. Dong X et al (2010) Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes. PLoS One 5(2):e9249

    Article  CAS  Google Scholar 

  45. Auchincloss AH, Diez Roux AV (2008) A new tool of epidemiology the usefulness of dynamic-agent models in understanding place effects on health. Am J Epidemiol 168(1):1–8

    Article  Google Scholar 

  46. Hoehme S, Drasdo D (2010) A cell-based simulation software for multi-cellular systems. Bioinformatics 26(20):2641–2642

    Article  CAS  Google Scholar 

  47. An G, Christley S (2011) Agent-based modeling and biomedical ontologies: a roadmap. Wiley Interdisc Rev Computat Stat 3(4):343–356

    Article  Google Scholar 

  48. Railsback SF, Lytinen SL, Jackson SK (2006) Agent-based simulation platforms: review and development recommendations. Simulation 82(9):609–623

    Article  Google Scholar 

  49. Vodovotz Y et al (2009) Mechanistic simulations of inflammation: current state and future prospects. Math Biosci 217(1):1–10

    Article  Google Scholar 

  50. Deisboeck TS et al (2001) Pattern of self-organization in tumour systems: complex growth dynamics in a novel brain tumour spheroid model. Cell Prolif 34(2):115–134

    Article  CAS  Google Scholar 

  51. An G et al (2017) Optimization and control of agent-based models in biology: a perspective. Bull Math Biol 79(1):63–87

    Article  CAS  Google Scholar 

  52. Petersen BK et al (2019) Deep reinforcement learning and simulation as a path toward precision medicine. J Comput Biol 26:597

    Article  CAS  Google Scholar 

  53. Deitch EA (2010) Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction. Ann N Y Acad Sci 1207(Suppl 1):E103–E111

    Article  Google Scholar 

  54. Christley S, An G (2011) A proposed method for dynamic knowledge representation via agent-directed composition from biomedical and simulation ontologies: an example using gut mucus layer dynamics. In: 2011 Spring simulation multiconference/agent-directed simulation symposium. Boston, MA

    Google Scholar 

  55. Uschold M, Gruninger M (2009) Ontologies: principles, methods and applications. Knowl Eng Rev 11:93–136

    Article  Google Scholar 

  56. Noy NF et al (2009) BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res 1(37):170–173

    Article  CAS  Google Scholar 

  57. Rubin DL et al (2006) National Center for Biomedical Ontology: advancing biomedicine through structured organization of scientific knowledge. Omics 10(2):185–198

    Article  CAS  Google Scholar 

  58. Jeong E, Nagasaki M, Miyano S (2008) Rule-based reasoning for system dynamics in cell systems. Genome Inform 20:25–36

    Google Scholar 

  59. Takai-Igarashi T (2005) Ontology based standardization of petri net modeling for signaling pathways. In Silico Biol 5(5–6):529–536

    Google Scholar 

  60. Shegogue D, Zheng WJ (2005) Integration of the gene ontology into an object-oriented architecture. BMC Bioinform 6:113

    Article  CAS  Google Scholar 

  61. Ruebenacker O, et al (2007) Kinetic modeling using BioPAX ontology. In: Proceedings (IEEE International Conference on Bioinformatics Biomed), p 339–348

    Google Scholar 

  62. Lister AL et al (2010) Annotation of SBML models through rule-based semantic integration. J Biomed Seman 1(Supplement 1):S3

    Article  Google Scholar 

  63. Colasanti R, An G (2009) The abstracted biological computational unit (ABCU): introduction of a recursive descriptor for multi-scale computational modeling of biological systems. J Crit Care 24:e35–e36

    Article  Google Scholar 

  64. Benjamin P, Patki M, Mayer R (2006) Using ontologies for simulation modeling. In: Proceedings of the 2006 winter simulation conference, p 1151–1159

    Google Scholar 

  65. Petty MD, Weisel EW (2003) A composability lexicon. In: Proceedings of the 2003 Spring simulation conference, p 181–187

    Google Scholar 

  66. Yilmaz L (2007) A strategy for improving dynamic composability: ontology-driven introspective agent architectures. J Syst Cybernetics Inform 5(5):1–9

    Google Scholar 

  67. Alonso-Calvo R et al (2007) An agent- and ontology-based system for integrating public gene, protein and disease databases. J Biomed Inform 40(1):17–29

    Article  CAS  Google Scholar 

  68. Bartocci E et al (2007) An agent-based multilayer architecture for bioinformatics grids. IEEE Trans Nanobioscience 6(2):142–148

    Article  Google Scholar 

  69. Merelli E et al (2006) Agents in bioinformatics, computational and systems biology. Brief Bioinform 8(1):45–59

    Article  CAS  Google Scholar 

  70. Keele JW, Wray JE (2005) Software agents in molecular computational biology. Brief Bioinform 6(4):370–379

    Article  CAS  Google Scholar 

  71. Karasavvas KA, Baldock R, Burger A (2004) Bioinformatics integration and agent technology. J Biomed Inform 37(3):205–219

    Article  CAS  Google Scholar 

  72. Grimm V et al (2010) The ODD protocol a review and first update. Ecol Model 221(23):2760–2768

    Article  Google Scholar 

  73. Hinkelmann F et al (2011) A mathematical framework for agent based models of complex biological networks. Bull Math Biol 73(7):1583–1602

    Article  Google Scholar 

  74. Segovia-Juarez JL, Ganguli S, Kirschner D (2004) Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J Theor Biol 231(3):357–376

    Article  CAS  Google Scholar 

  75. An G (2018) The crisis of reproducibility, the denominator problem and the scientific role of multi-scale modeling. Bull Math Biol 80(12):3071–3080

    Article  Google Scholar 

  76. An G, Day J (2021) Precision systems medicine: a control discovery problem. In: Wolkenhauer, Olaf (ed.). Systems Medicine: Integrative, Qualitative and Computational Approaches, vol. 3, pp. 318–330. Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.11513-2

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

An, G. (2021). Agent-Based Modeling in Translational Systems Biology. In: Vodovotz, Y., An, G. (eds) Complex Systems and Computational Biology Approaches to Acute Inflammation. Springer, Cham. https://doi.org/10.1007/978-3-030-56510-7_3

Download citation

Publish with us

Policies and ethics