Skip to main content

Genetic Diversity of New World Crocodilians

  • Chapter
  • First Online:
Conservation Genetics of New World Crocodilians

Abstract

Genetic diversity is one of the most important attributes of any population; it is defined as the variation in the amount of genetic information within and among individuals of a population, species, assemblage, or community. It can be expressed as differences between individuals at different levels, such as morphological features, structure and chromosomal number, and polymorphisms of sequences of DNA or proteins. An assessment of genetic diversity is fundamental to population genetic studies and has extremely important applications in conservation biology and the development of management and sustainable use plans. This chapter discusses the main indices that allow analyzing genetic variability and population structure of New World crocodilian populations, the methodologies used to estimate these indices, and the principal population genetic data available for these species. The effective population size concept is also discussed, a fundamental parameter in the study of principally those crocodile populations that have been drastically reduced in size and/or suffered fragmentation of their environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcón LCC, Montenegro CB (2012) Caracterización genética de la población ex situ de Crocodylus intermedius presente en Colombia. Revista Acad Colomb Ci Exact XXXVI(140):373–383

    Google Scholar 

  • Amavet PS, Rosso EL, Markariani RM et al (2007) Analysis of the population structure of Broad-snouted caiman (Caiman latirostris) in Santa Fe, Argentina, using the RAPD technique. J Herpetol 41:294–300. https://doi.org/10.1670/0022-1511

    Article  Google Scholar 

  • Amavet P, Vilardi JC, Rosso E et al (2009) Genetic and morphometric variability in Caiman latirostris (broad-snouted caiman), reptilia, Alligatoridae. J Exp Zool A Ecol Genet Physiol 311A:258–269. https://doi.org/10.1002/jez.523

    Article  Google Scholar 

  • Amavet P, Vilardi JC, Markariani R et al (2010) Genetic variability in Caiman latirostris (broad-snouted caiman) (Reptilia, Alligatoridae). Contributions to the sustainable use of populations recovered from the risk of extinction. In: Tepper GH (ed) Species diversity and extinction. Buenos Aires, Argentina, pp 341–359

    Google Scholar 

  • Amavet PS, Rueda EC, Siroski PA et al (2015) Isolation and characterization of new microsatellite markers for application in population genetic studies of Caiman latirostris and related species. Amphibia-Reptilia 36(2):175–180. https://doi.org/10.1163/15685381-00002987

    Article  Google Scholar 

  • Amavet PS, Rueda EC, Vilardi JC et al (2017) The broad-snouted caiman population recovery in Argentina. A case of genetics conservation. Amphibia-Reptilia 38(4):411–424. https://doi.org/10.1163/15685381-00003123

    Article  Google Scholar 

  • Balaguera-Reina SA, Velasco A (2019) Caiman crocodilus. The IUCN red list of threatened species 2019: e.T46584A3009688. https://doi.org/10.2305/IUCN.UK.2019-1.RLTS.T46584A3009688.en. Accessed 24 Sept 2019

  • Balaguera-Reina SA, Espinosa-Blanco AS, Morales-Betancourt MA et al (2017) Conservation status and regional habitat priorities for the Orinoco crocodile: past, present, and future. PLoS One 12(2):e0172439. https://doi.org/10.1371/journal.pone.0172439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashyal A (2012) Population genetics of the American crocodile in Coiba National Park. Texas Tech University, Panama

    Google Scholar 

  • Bishop JM, Leslie AJ, Bourquin SL et al (2009) Reduced effective population size in an overexploited population of the Nile crocodile (Crocodylus niloticus). Biol Conserv 142:2335–2341. https://doi.org/10.1016/j.biocon.2009.05.016

    Article  Google Scholar 

  • Bittencourt PS, Campos Z, de Lima Muniz F et al (2019) Evidence of cryptic lineages within a small South American crocodilian: the Schneider’s dwarf caiman Paleosuchus trigonatus (Alligatoridae: Caimaninae). PeerJ 7:e6580. https://doi.org/10.7717/peerj.6580

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloor P, Ibáñez C, Viloria-Lagares TA (2015) Mitochondrial DNA analysis reveals hidden genetic diversity in captive populations of the threatened American crocodile (Crocodylus acutus) in Colombia. Ecol Evol 5:130–140. https://doi.org/10.1002/ece3.1307

    Article  PubMed  Google Scholar 

  • Bocourt F (1876) Note sur quelques reptiles de l’Isthme de Tehuantepec (Mexique) donnés par M. Sumichrast au museum. J Zool 5(5–6):386–411

    Google Scholar 

  • Borges VS, Santiago PC, Lima NGS et al (2018) Evolutionary significant units within populations of Neotropical broad-snouted caimans (Caiman latirostris, Daudin, 1802). J Herpetol 52:282–288. https://doi.org/10.1670/17-074

    Article  Google Scholar 

  • Cedeño-Vázquez JR, Rodriguez D, Calmé S et al (2008) Hybridization between Crocodylus acutus and Crocodylus moreletii in the Yucatan Peninsula: I. Evidence from mitochondrial DNA and morphology. J Exp Zool A Ecol Genet Physiol 309A:373–661. https://doi.org/10.1002/jez.473

    Article  CAS  Google Scholar 

  • Cockerham CC (1973) Analysis of gene frequencies. Genetics 74:679–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cope ED (1868) On the crocodilian genus Perosuchus. Proc Acad Nat Sci Philadelphia 1868:203

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis LM, Glenn TC, Strickland DC et al (2002) Microsatellite DNA analyses support an east-west phylogeographic split of American alligator populations. J Exp Zool 294(4):352–372. https://doi.org/10.1002/jez.10189

    Article  CAS  PubMed  Google Scholar 

  • de Lima Muniz F, Ximenes AM, Bittencourt PS et al (2019) Detecting population structure of Paleosuchus trigonatus (Alligatoridae: Caimaninae) through microsatellites markers developed by next generation sequencing. Mol Biol Rep 46(2):2473–2484

    Article  CAS  Google Scholar 

  • de Oliveira DP, Farias IP, Marioni B et al (2010) Microsatellite markers for mating system and population analyses of the spectacled Caiman caiman crocodilus (Linnaeus 1758). Conserv Genet Resour 2:181–184. https://doi.org/10.1007/s12686-010-9221-6

    Article  Google Scholar 

  • de Thoisy B, Hrbek T, Farias IP et al (2006) Genetic structure, population dynamics, and conservation of Black caiman (Melanosuchus niger). Biol Conserv 133:474–482. https://doi.org/10.1016/j.biocon.2006.07.009

    Article  Google Scholar 

  • Dever JA, Densmore LD (2001) Microsatellites in Morelet’s crocodile (Crocodylus moreletii) and their utility in addressing crocodilian population genetics questions. J Herpetol 35:541–544

    Article  Google Scholar 

  • Dever JA, Strauss RE, Rainwater TR et al (2002) Genetic diversity, population subdivision, and gene flow in Morelet’s crocodile (Crocodylus moreletii) from Belize, Central America. Copeia 2002(4):1078–1091. https://doi.org/10.1643/0045-8511(2002)002[1078:GDPSAG]2.0.CO;2

    Article  Google Scholar 

  • Eaton MJ, Martin AP, Thorbjarnarson JB, Amato G (2009) Species-level diversification of African dwarf crocodiles (genus Osteolaemus): a geographic and phylogenetic perspective. Mol Phylogenet Evol 50(3):496–506. https://doi.org/10.1016/j.ympev.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Farias IP, Da Silveira R, de Thoisy B et al (2004) Genetic diversity and population structure of Amazonian crocodilians. Anim Conserv 7:265–272. https://doi.org/10.1017/S136794300400143X

    Article  Google Scholar 

  • Farias IP, Marioni B, Verdade LM et al (2013) Avaliação do risco de extinção do jacaré-tinga Caiman crocodilus (Linnaeus, 1758) no Brasil. Biodiversidade Brasileira 3(1):4–12

    Google Scholar 

  • FitzSimmons N, Tanksley S, Forstner M et al (2000) Microsatellite markers for Crocodylus: new genetic tools for population genetics, mating system studies and forensics. In: Grigg G, Seebacher F, Franklin C (eds) Crocodilian biology and evolution. Surrey Beatty, Chipping Norton, pp 51–57

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation. Mol Ecol 10(12):2741–2752

    Article  CAS  PubMed  Google Scholar 

  • Freeland JR, Petersen SD, Kirk H (2011) Molecular ecology, 2nd edn. Wiley-Blackwell Publishing Ltd.

    Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2):915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gartside DF, Dessauer HC, Joanen T (1977) Genic homozygosity in an ancient reptile (Alligator mississippiensis). Biochem Genet 15:655–663

    Article  CAS  PubMed  Google Scholar 

  • Glenn TC, Dessauer HC, Braun MJ (1998) Characterization of microsatellite DNA loci in American alligators. Copeia 1998(3):591–601

    Article  Google Scholar 

  • Glenn TC, Staton JL, Vu AT et al (2002) Low mitochondrial DNA variation among American alligators and a novel non-coding region in crocodilians. J Exp Zool 294:312–324. https://doi.org/10.1002/jez.10206

    Article  CAS  PubMed  Google Scholar 

  • Godshalk RE (2006) Phylogeography and conservation genetics of the yacare caiman (Caiman yacare) of South America. University of Florida. Available at: http://etd.fcla.edu/UF/UFE0013072/godshalk_r.pdf

  • Godshalk RE (2008) The phylogeography of the yacare caiman, Caiman yacare, of Central South America. IUCN – The World Conservation Union, Gland (Switzerland)

    Google Scholar 

  • González-Trujillo R, Rodriguez D, González-Romero A et al (2012) Testing for hybridization and assessing genetic diversity in Morelet’s crocodile (Crocodylus moreletii) populations from Central Veracruz. Conserv Genet 13:1677–1683. https://doi.org/10.1007/s10592-012-0406-2

    Article  Google Scholar 

  • Goodman SJ (1997) Rst Calc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Mol Ecol 6:881–885. https://doi.org/10.1111/j.1365-294x.1997.tb00143.x

    Article  CAS  Google Scholar 

  • Grigg G, Kirshner D (2015) Biology and evolution of crocodilians, 1st edn. Comstock Publishing Associates, Ithaca

    Book  Google Scholar 

  • Hare MP, Nunney L, Schwartz MK et al (2011) Understanding and estimating effective population size for practical application in marine species management. Conserv Biol 25(3):438–449. https://doi.org/10.1111/j.1523-1739.2010.01637.x

    Article  PubMed  Google Scholar 

  • Hedrick PW (2000) Genetics of populations, 2nd edn. Jones and Bartlett Publishers

    Google Scholar 

  • Hedrick PW (2005) Genetics of populations, 3rd edn. Jones and Bartlett Publishers

    Google Scholar 

  • Hernández-Rangel SM (2015) Dinâmica e estrutura populacional do jacaré-açu (Melanosuchus niger) na Amazônia. Dissertação de Mestrado do Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva do Instituto Nacional de Pesquisas da Amazônia. Manaus, p 74

    Google Scholar 

  • Lawson R, Kofron CP, Dessauer HC (1989) Allozyme variation in a natural population of the Nile crocodile. Am Zool 29:863–871. https://doi.org/10.1093/icb/29.3.863

    Article  Google Scholar 

  • Lei N° 5.197, de 3 de janeiro de (1967). Legislação Federal do Brasil. Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos. Dispõe sobre a proteção à fauna e dá outras providências

    Google Scholar 

  • Linnaeus C (1758) Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Laurentii Salvii, Holmiæ. 10th ed, 824 pp

    Google Scholar 

  • Machkour-M’Rabet S, Hénaut Y, Charruau P et al (2009) Between introgression events and fragmentation, islands are the last refuge for the American crocodile in Caribbean Mexico. Mar Biol 156(6):1321–1333. https://doi.org/10.1007/s00227-009-1174-5

    Article  Google Scholar 

  • Magnusson WE, Campos Z (2010) Cuvier’s smooth-fronted Caiman, Paleosuchus palpebrosus. In: Manolis SC, Stevenson C (eds) Crocodiles. Status survey and conservation action plan, 3rd edn. Crocodile Specialist Group, Darwin, pp 40–42

    Google Scholar 

  • Marioni B, Farias IP, Verdade LM et al (2013) Avaliação do risco de extinção do jacaré-açu Melanosuchus niger (Spix, 1825) no Brasil. Biodiversidade Brasileira 3(1):31–39

    Google Scholar 

  • Mauger LA, Velez E, Cherkiss MS et al (2017) Conservation genetics of American crocodile, Crocodylus acutus, populations in Pacific Costa Rica. Nat Conserv 17:1–17. https://doi.org/10.3897/natureconservation.17.9714

    Article  Google Scholar 

  • McVay JD, Rodriguez D, Rainwater TR et al (2008) Evidence of multiple paternity in Morelet’s crocodile (Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers. J Exp Zool A Ecol Genet Physiol 309A(10):643–648. https://doi.org/10.1002/jez.500

    Article  Google Scholar 

  • Medem F (1955) A new subspecies of Caiman sclerops from Colombia. Fieldiana: Zoology 37:339–343

    Google Scholar 

  • Medem F (1983) Los Crocodylia de Sur América. Universidad Nacional de Colombia y Fondo Colombiano de Investigaciones Científicas y Proyectos Especiales. COLCIENCIAS, Bogotá

    Google Scholar 

  • Miles LG, Lance SL, Isberg SR et al (2009) Cross-species amplification of microsatellites in crocodilians: assessment and applications for the future. Conserv Genet 10:935–954

    Article  CAS  Google Scholar 

  • Milián-García Y, Venegas-Anaya M, Frias-Soler R et al (2011) Evolutionary history of Cuban crocodiles Crocodylus rhombifer and Crocodylus acutus inferred from multilocus markers. J Exp Zool A Ecol Genet Physiol 315 A:358–375. https://doi.org/10.1002/jez.683

    Article  Google Scholar 

  • Milián-García Y, Ramos-Targarona R, Pérez-Fleitas E et al (2015) Genetic evidence of hybridization between the critically endangered Cuban crocodile and the American crocodile: implications for population history and in situ/ex situ conservation. Heredity 114:272–280

    Article  CAS  PubMed  Google Scholar 

  • Morales-Betancourt MA, Lasso CA, Martínez W et al (2015) Crocodylus intermedius. In: Morales-Betancourt MA, Lasso CA, Páez VP, Bock BC (eds) Libro rojo de reptiles de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IavH), Universidad de Antioquia, Bogotá, pp 186–190

    Google Scholar 

  • Moritz C (1994) Defining evolutionarily significant units’ for conservation. TREE 9(10):373–375

    CAS  PubMed  Google Scholar 

  • Muniz FL, Campos Z, Hernández Rangel SM et al (2018) Delimitation of evolutionary units in Cuvier’s dwarf caiman, Paleosuchus palpebrosus (Cuvier, 1807): insights from conservation of a broadly distributed species. Conserv Genet 19(3):599–610. https://doi.org/10.1007/s10592-017-1035-6

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 83:583–590

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Nei M, Li WH (1976) The transient distribution of allele frequencies under mutation pressure. Genet Res 28(3):205–214

    Article  CAS  PubMed  Google Scholar 

  • Ojeda GN, Amavet PS, Rueda EC et al (2017) Mating system of Caiman yacare (Reptilia: Alligatoridae) described from microsatellite genotypes. J Hered 108(2):135–141. https://doi.org/10.1093/jhered/esw080

    Article  PubMed  Google Scholar 

  • Pacheco-Sierra G, Vázquez-Domínguez E, Pérez-Alquicira J et al (2018) Ancestral hybridization yields evolutionary distinct hybrids lineages and species boundaries in crocodiles, posing unique conservation conundrums. Front Ecol Evol 6:138. https://doi.org/10.3389/fevo.2018.00138

    Article  Google Scholar 

  • Platt SG, Thorbjarnarson JB (2000) Population status and conservation of Morelet’s crocodile, Crocodylus moreletii, in northern Belize. Biol Conserv 96:21–29. https://doi.org/10.1016/S0006-3207(00)00039-2

    Article  Google Scholar 

  • Porras Murillo LP, Bolaños Montero JRB, Barr BR (2008) Variación genética y flujo de genes entre poblaciones de Crocodylus acutus (Crocodylia: Crocodylidae) en tres ríos del Pacífico Central, Costa Rica. Rev Biol Trop 56(3):1471–1480

    PubMed  Google Scholar 

  • Rand DM (1996) Neutrality tests of molecular markers and the connections between DNA polymorphism, demography, and conservation biology. Conserv Biol 10:665–671

    Article  Google Scholar 

  • Ray DA, Dever JA, Platt SG et al (2004) Low levels of nucleotide diversity in Crocodylus moreletii and evidence of hybridization with C. acutus. Conserv Genet 5:449–462

    Article  CAS  Google Scholar 

  • Rebêlo GH, Lugli L (2001) Distribution and abundance of four caiman species (Crocodylia: Alligatoridae) in Jaú National Park, Amazonas, Brazil. Rev Biol Trop 49(3–4):1095–1109

    PubMed  Google Scholar 

  • Rebêlo GH, Magnusson WE (1983) An analysis of the effect of hunting on Caiman crocodilus and Melanosuchus niger based on the sizes of confiscated skins. Biol Conserv 26:95–104

    Article  Google Scholar 

  • Roberto IJ et al (2020) Unexpected but unsurprising lineage diversity within the most widespread Neotropical crocodilian genus Caiman (Crocodylia, Alligatoridae). Syst Biodiv. (Accepted)

    Google Scholar 

  • Rodriguez D et al (2008) Hybridization between Crocodylus acutus and Crocodylus moreletii in the Yucatan Peninsula: II. Evidence from microsatellites. J Exp Zool A Ecol Genet Physiol 309(10):674–686. https://doi.org/10.1002/jez.499

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez D, Cedeño-Vázquez JR, Forstner MRJ et al (2011) Effect of human-mediated migration and hybridization on the recovery of the American crocodile in Florida (USA). Conserv Genet 12(2):449–459. https://doi.org/10.1007/s10592-010-0153-1

    Article  Google Scholar 

  • Rossi NA (2016) Population genetic structure and reproductive ecology of crocodylus across local and regional scales. Columbia University

    Google Scholar 

  • Ryberg WA, Fitzgerald LA, Honeycutt RL et al (2002) Genetic relationships of American alligator populations distributed across different ecological and geographic scales. J Exp Zool 294(4):325–333. https://doi.org/10.1002/jez.10207

    Article  CAS  PubMed  Google Scholar 

  • Seijas AE, Antelo R, Hernández O (2015) Caimán del Orinoco Crocodylus intermedius. In: Rodrı́guez JP, Garcı́a-Rawlins A, Rojas-Suárez F (eds) Libro Rojo de la Fauna Venezolana, Cuarta edición. Provita y Fundación Empresas Polar, Caracas

    Google Scholar 

  • Serna-Lagunes R, González D, Díaz-Rivera P (2012) Variabilidad genética de poblaciones en cautiverio de Crocodylus moreletii (Crocodylia: Crocodylidae) mediante el uso de marcadores microsatelitales. Rev Biol Trop 60:425–436

    Article  PubMed  Google Scholar 

  • Shirley MH, Vliet KA, Carr AN, Austin JD (2014) Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation. Proc R Soc B Biol Sci 281:20132483. https://doi.org/10.1098/rspb.2013.2483

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorbjarnarson J (1999) Crocodile tears and skins, international trade, economic constraints, and limits to the sustainable use of crocodilians. Conservation Biology 13:465–470

    Google Scholar 

  • Targarona RR, Soberón RR, Cotayo L et al (2008) Crocodylus rhombifer. IUCN Crocodile Specialist Group, The IUCN Red List of Threatened Species 2008: e.T5670A112902585. https://doi.org/10.2305/IUCN.UK.1996.RLTS.T5670A11516438.en

  • United Nations (1992) Environment and Development. Terminology Bulletin United Nations: 344

    Google Scholar 

  • Vasconcelos WR et al (2006) Population genetic analysis of Caiman crocodilus (Linnaeus, 1758) from South America. Genet Mol Biol 29(2):220–230. https://doi.org/10.1590/S1415-47572006000200006

    Article  CAS  Google Scholar 

  • Vasconcelos WR, Hrbek T, Silveira R et al (2008) Phylogeographic and conservation genetic analysis of the black caiman (Melanosuchus niger). J Exp Zool 309A:600–613. https://doi.org/10.1002/jez.452

    Article  CAS  Google Scholar 

  • Velasco A, Ayarzagüena J (2010) Spectacled Caiman crocodilus. In: Manolis SC, Stevenson C (eds) Crocodiles. Status survey and conservation action plan, 3rd edn. Crocodile Specialist Group, Darwin

    Google Scholar 

  • Venegas-Anaya M, Crawford AJ, Escobedo Galván AH et al (2008) Mitochondrial DNA phylogeography of Caiman crocodilus in Mesoamerica and South America. J Exp Zool 309A(10):614–627

    Article  CAS  Google Scholar 

  • Verdade LM, Sarkis F (1998) Age at first reproduction in captive Caiman latirostris (Broad-snouted Caiman). Herpetol Rev 29:227–228

    Google Scholar 

  • Verdade LM, Zucoloto RB, Coutinho LL (2002) Microgeographic variation in Caiman latirostris. J Exp Zool 294(4):387–396. https://doi.org/10.1002/jez.10200

    Article  CAS  PubMed  Google Scholar 

  • Verdade LM, Sarkis-Goncalves F, Miranda-vilela MP et al (2003) New record of age at sexual maturity in captivity for Caiman latirostris (Broad-snouted caiman). Herpetol Rev 34:225–226

    Google Scholar 

  • Villela PMS (2004) Caracterização genética de populações de jacaré-do-papo- amarelo (Caiman latirostris), utilizando marcadores microssatélites. Universidade de São Paulo. Escola Superior de Agricultura “Luiz de Queiroz”. Available at: https://www.teses.usp.br/teses/disponiveis/91/91131/tde-21062005-143643/publico/PriscillaVillela.pdf

  • Villela PMS, Coutinho LL, Piña CI et al (2008) Macrogeographic genetic variation in broad-snouted caiman (Caiman latirostris). J Exp Zool A Ecol Genet Physiol 309A(10):628–636. https://doi.org/10.1002/jez.489

    Article  CAS  Google Scholar 

  • Waller T, Micucci P (1995) Los yacarés en Argentina: hacia un aprovechamiento sustentable. In: Larriera A, Verdade LM (eds) La Conservación y el manejo de Caimanes y Cocodrilos de América Latina. Fundación Banco Bica, Santo Tomé, pp 81–112

    Google Scholar 

  • Weaver JP, Rodriguez D, Venegas-Anaya M et al (2008) Genetic characterization of captive Cuban crocodiles (Crocodylus rhombifer) and evidence of hybridization with the American crocodile (Crocodylus acutus). J Exp Zool A Ecol Genet Physiol 309A(10):649–660. https://doi.org/10.1002/jez.471

    Article  CAS  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugenics 15:323–354

    Article  CAS  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations, Vol. 2. The theory of gene frequencies. University of Chicago Press, Chicago

    Google Scholar 

  • Zucoloto RB (2003) Desenvolvimento de seqüências de DNA microssatélite para estudo de populações remanescentes de Jacaré-de-Papo Amarelo (Caiman latirostris), da região central do estado de São Paulo. Universidade de São Paulo. Centro de Energia Nuclear na Agricultura. Available at: https://www.teses.usp.br/teses/disponiveis/64/64132/tde-19092003-161621/publico/Rodrigo.pdf

  • Zucoloto RB, Verdade LM, Coutinho LL (2002) Microsatellite DNA library for Caiman latirostris. J Exp Zool 294(4):346–351. https://doi.org/10.1002/jez.10190

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Susana Amavet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amavet, P.S., Zucoloto, R.B., Hrbek, T., Farias, I.P. (2021). Genetic Diversity of New World Crocodilians. In: Zucoloto, R.B., Amavet, P.S., Verdade, L.M., Farias, I.P. (eds) Conservation Genetics of New World Crocodilians. Springer, Cham. https://doi.org/10.1007/978-3-030-56383-7_5

Download citation

Publish with us

Policies and ethics