Skip to main content

Local Bifurcations in the Generalized Cahn-Hilliard Equation

  • Conference paper
  • First Online:
Differential and Difference Equations with Applications (ICDDEA 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 333))

Abstract

A periodic boundary value problem for a generalized Cahn-Hilliard equation is studied. Bifurcation problems are considered. The analysis of these bifurcation problems use the methods of invariant manifold and the Poincare normal forms for the dynamic systems with an infinite-dimensional space of initial conditions. It is proved that this dynamic systems has a local attractor formed by unstable solutions in the sense of Lyapunov definition. Asymptotic formulas for these solutions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    MATH  Google Scholar 

  2. Podolny, A., Zaks, M.A., Rubinstein, B.Y., Golovin, A.A., Nepomnyashchy, A.A.: Dynamics of domain walls governed by the convective Cahn-Hilliard equation. Phys. D 201, 91–305 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Frolovskaya, O.A., Pukhnachev, V.V.: Stationary solutions of quadratic Cahn–Hilliard equation and their stability. In: AIP Conference Proceedings, vol. 1561, pp. 47–52 (2013)

    Google Scholar 

  4. Frolovskaya, O.A., Admaev, O.V., Pukhnachev, V.V.: Special case of the Cahn-Hilliard equation. Siber. Electon. Math. Rep. 10, 324–334 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Novick-Cohen, A., Segel, L.A.: Nonlinear aspects of the Cahn-Hilliard equation. Phys. D 10, 277–298 (1984)

    MathSciNet  Google Scholar 

  6. Kulikov, A.N., Kulikov, D.A.: Local bifurcations in the Cahn-Hilliard and Kuramoto-Sivashinsky equations and in their generalizations. Comput. Math. Math. Phys. 59, 630–643 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Kulikov, A.N., Kulikov, D.A.: Spatially ingomogeneous solutions in two boundary value problems for the Cahn-Hilliard equations. Belgorod State Univ. Sci. Bull. Math. Phys. 51, 21–32 (2019)

    Google Scholar 

  8. Sobolevskii, P.E.: Equations of a parabolic type in a Banach space. Moscov. Mat. Obsc. 10, 297–350 (1961)

    MathSciNet  Google Scholar 

  9. Lions, J.L., Magenes, E.: Problemes aux limit es nonhomogenes et applications, vol. 1. Dunod, Paris (1968)

    Google Scholar 

  10. Krein, S.G.: Linear Equations in Banach Spaces. Springer, New York (1982)

    MATH  Google Scholar 

  11. Marsden, J.E., McCraken, M.: The Hopf Bifurcations and its Applications. Springer, New York (1976)

    Google Scholar 

  12. Kulikov, A.N.: Inertial manifolds of nonlinear self-oscillations of differential equations in a Hilbert space. Preprint 85 of Institute of M.V. Keldysh applied mathematics, Moscow (1991)

    Google Scholar 

  13. Kulikov, A.N., Kulikov, D.A.: Formation of wavy nanostructures on the surface of flat substrates by ion bombardment. Comput. Math. Math. Phys. 52, 930–945 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Kulikov, A., Kulikov, D.: Bifurcation in Kuramoto-Sivashinsky equation. Pliska Stud. Math. 25, 101–110 (2015)

    MATH  Google Scholar 

  15. Kulikov, A.N., Kulikov, D.A.: Local bifurcations in the periodic boundary value problem for the generalized Kuramoto-Sivashinsky. Autom. Remote Control 78, 1955–1966 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Kulikov, A.N., Kulikov, D.A.: Bifurcations in a boundary value problem of nanoelectronics. J. Math. Sci. 208, 211–221 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Kulikov, A.N., Kulikov, D.A.: Spatially inhomogeneous solutions for a modified Kuramoto-Sivashinsky equation. J. Math. Sci. 219, 173–183 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Kolesov, A.Y., Kulikov, A.N., Rozov, N.H.: Invariant tori of a class of point mapping: the annulus principle. Differ. Equ. 39, 614–631 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Kolesov, A.Y., Kulikov, A.N., Rozov, N.K.: Invariant tori of a class of point transformations: preservation of an invariant torus under perturbations. Differ. Equ. 39, 775–790 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Westview Press, Colorado (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kulikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulikov, A., Kulikov, D. (2020). Local Bifurcations in the Generalized Cahn-Hilliard Equation. In: Pinelas, S., Graef, J.R., Hilger, S., Kloeden, P., Schinas, C. (eds) Differential and Difference Equations with Applications. ICDDEA 2019. Springer Proceedings in Mathematics & Statistics, vol 333. Springer, Cham. https://doi.org/10.1007/978-3-030-56323-3_14

Download citation

Publish with us

Policies and ethics