Skip to main content

Chemically Synthesized TLR4 Ligands, Their Immunological Functions, and Potential as Vaccine Adjuvant

  • Chapter
  • First Online:
The Role of Toll-Like Receptor 4 in Infectious and Non Infectious Inflammation

Part of the book series: Progress in Inflammation Research ((PIR,volume 87))

  • 469 Accesses

Abstract

Lipopolysaccharide (LPS), the major glycoconjugates in the outer membrane of Gram-negative bacteria, and its active center glycolipid, lipid A, are recognized by an innate immune system receptor, Toll-like receptor (TLR) 4, and trigger immunostimulatory effects and thus have the potential to act as vaccine adjuvants. Although canonical Escherichia coli LPS induces strong inflammation and acts as an endotoxin due to the ability that hyperstimulates the immune system, recent studies revealed that inflammatory activity of lipid A can be attenuated by the structural modification. Here, we discuss the structure–activity relationship of lipid A and the potential as a vaccine adjuvant, and introduce currently used vaccines that contain LPS and lipid A. We also introduce the strategy of safe lipid A adjuvant development based on human symbiotic bacterial lipid As. Finally, we present studies on lipid A–based self-adjuvant strategy and how structural modifications and conjugations can help regulate the adjuvanticity of lipid A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kusumoto S, Fukase K, Shiba T. Key structures of bacterial peptidoglycan and lipopolysaccharide triggering the innate immune system of higher animals: chemical synthesis and functional studies. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(4):322–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wei MQ, Mengesha A, Good D, Anne J. Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett. 2008;259(1):16–27. https://doi.org/10.1016/j.canlet.2007.10.034.

    Article  CAS  PubMed  Google Scholar 

  3. Leroux-Roels G. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine. 2010;28(Suppl 3):C25–36. https://doi.org/10.1016/j.vaccine.2010.07.021.

    Article  PubMed  Google Scholar 

  4. Molinaro A, Holst O, Di Lorenzo F, Callaghan M, Nurisso A, D’Errico G, Zamyatina A, Peri F, Berisio R, Jerala R, Jimenez-Barbero J, Silipo A, Martin-Santamaria S. Chemistry of lipid A: at the heart of innate immunity. Chem Eur J. 2015;21(2):500–19. https://doi.org/10.1002/chem.201403923.

    Article  CAS  PubMed  Google Scholar 

  5. Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science. 2007;316(5831):1628–32. https://doi.org/10.1126/science.1138963.

    Article  CAS  PubMed  Google Scholar 

  6. Rietschel ET, Westphal O. Endotoxin: historical perspectives. In: Endotoxin in health and disease. New York: Marcel Dekker; 1999.

    Google Scholar 

  7. Imoto M, Kusumoto S, Shiba T, Naoki H, Iwashita T, Rietschel ET, Wollenweber HW, Galanos C, Luderitz O. Chemical-structure of Escherichia-Coli lipid-a – linkage site of acyl-groups in the disaccharide backbone. Tetrahedron Lett. 1983;24(37):4017–20. https://doi.org/10.1016/S0040-4039(00)88251-9.

    Article  CAS  Google Scholar 

  8. Imoto M, Kusumoto S, Shiba T, Rietschel ET, Galanos C, Luederitz O. Chemical structure of Escherichia coli lipid A. Tetrahedron Lett. 1985;26(7):907–8.

    Article  CAS  Google Scholar 

  9. Imoto M, Yoshimura H, Shimamoto T, Sakaguchi N, Kusumoto S, Shiba T. Total synthesis of Escherichia coli lipid A, the endotoxically active principle of cell-surface lipopolysaccharide. Bull Chem Soc Jpn. 1987;60(6):2205–14.

    Article  CAS  Google Scholar 

  10. Takayama K, Qureshi N, Mascagni P. Complete structure of lipid A obtained from the lipopolysaccharides of the heptoseless mutant of Salmonella typhimurium. J Biol Chem. 1983;258(21):12801–3.

    Article  CAS  PubMed  Google Scholar 

  11. Flad HD, Loppnow H, Feist W, Wang MH, Brade H, Kusumoto S, Rietschel ET, Ulmer AJ. Interleukin 1 and tumor necrosis factor: studies on the induction by lipopolysaccharide partial structures. Lymphokine Res. 1989;8(3):235–8.

    CAS  PubMed  Google Scholar 

  12. Wang MH, Feist W, Herzbeck H, Brade H, Kusumoto S, Rietschel ET, Flad HD, Ulmer AJ. Suppressive effect of lipid A partial structures on lipopolysaccharide or lipid A-induced release of interleukin 1 by human monocytes. FEMS Microbiol Immunol. 1990;2(3):179–85. https://doi.org/10.1111/j.1574-6968.1990.tb03517.x.

    Article  CAS  PubMed  Google Scholar 

  13. Golenbock DT, Hampton RY, Qureshi N, Takayama K, Raetz CR. Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J Biol Chem. 1991;266(29):19490–8.

    Article  CAS  PubMed  Google Scholar 

  14. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86(6):973–83. https://doi.org/10.1016/s0092-8674(00)80172-5.

    Article  CAS  PubMed  Google Scholar 

  15. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388(6640):394–7. https://doi.org/10.1038/41131.

    Article  CAS  PubMed  Google Scholar 

  16. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085–8. https://doi.org/10.1126/science.282.5396.2085.

    Article  CAS  PubMed  Google Scholar 

  17. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84. https://doi.org/10.1038/ni.1863.

    Article  CAS  PubMed  Google Scholar 

  18. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med. 1999;189(11):1777–82. https://doi.org/10.1084/jem.189.11.1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akashi S, Saitoh S, Wakabayashi Y, Kikuchi T, Takamura N, Nagai Y, Kusumoto Y, Fukase K, Kusumoto S, Adachi Y, Kosugi A, Miyake K. Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than that with MD-2 or CD14. J Exp Med. 2003;198(7):1035–42. https://doi.org/10.1084/jem.20031076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Akashi S, Nagai Y, Ogata H, Oikawa M, Fukase K, Kusumoto S, Kawasaki K, Nishijima M, Hayashi S, Kimoto M, Miyake K. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int Immunol. 2001;13(12):1595–9. https://doi.org/10.1093/intimm/13.12.1595.

    Article  CAS  PubMed  Google Scholar 

  21. Ohto U, Fukase K, Miyake K, Satow Y. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science. 2007;316(5831):1632–4. https://doi.org/10.1126/science.1139111.

    Article  CAS  PubMed  Google Scholar 

  22. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee JO. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 2007;130(5):906–17. https://doi.org/10.1016/j.cell.2007.08.002.

    Article  CAS  PubMed  Google Scholar 

  23. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458(7242):1191–5. https://doi.org/10.1038/nature07830.

    Article  CAS  PubMed  Google Scholar 

  24. Ohto U, Fukase K, Miyake K, Shimizu T. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci U S A. 2012;109(19):7421–6. https://doi.org/10.1073/pnas.1201193109.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fukase KF, Fujimoto Y, Shimoyama A, Tanaka K. Synthesis of bacterial Glycoconjugates and their bio-functional studies in innate immunity. J Synth Org Chem Jpn. 2012;70(2):113–30.

    Article  CAS  Google Scholar 

  26. Kusumoto S, Fukase K. Synthesis of endotoxic principle of bacterial lipopolysaccharide and its recognition by innate immune system of hosts. Chem Rec. 2006;6(6):333–43. https://doi.org/10.1002/tcr.20098.

    Article  CAS  PubMed  Google Scholar 

  27. Brade L, Brandenburg K, Kuhn HM, Kusumoto S, Macher I, Rietschel ET, Brade H. The immunogenicity and antigenicity of lipid A are influenced by its physicochemical state and environment. Infect Immun. 1987;55(11):2636–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanimura N, Saitoh S, Ohto U, Akashi-Takamura S, Fujimoto Y, Fukase K, Shimizu T, Miyake K. The attenuated inflammation of MPL is due to the lack of CD14-dependent tight dimerization of the TLR4/MD2 complex at the plasma membrane. Int Immunol. 2014;26(6):307–14. https://doi.org/10.1093/intimm/dxt071.

    Article  CAS  PubMed  Google Scholar 

  29. Fujimoto Y, Shimoyama A, Saeki A, Kitayama N, Kasamatsu C, Tsutsui H, Fukase K. Innate immunomodulation by lipophilic termini of lipopolysaccharide; synthesis of lipid As from Porphyromonas gingivalis and other bacteria and their immunomodulative responses. Mol BioSyst. 2013;9(5):987–96. https://doi.org/10.1039/c3mb25477a.

    Article  CAS  PubMed  Google Scholar 

  30. Ryan ET, Calderwood SB. Cholera vaccines. Clin Infect Dis. 2000;31(2):561–5. https://doi.org/10.1086/313951.

    Article  CAS  PubMed  Google Scholar 

  31. Keystone J. Typhoid vaccination – update. Can J Infect Dis = J Can des Mal Infect. 1995;6(5):231. https://doi.org/10.1155/1995/919582.

    Article  CAS  Google Scholar 

  32. Erturk-Hasdemir D, Oh SF, Okan NA, Stefanetti G, Gazzaniga FS, Seeberger PH, Plevy SE, Kasper DL. Symbionts exploit complex signaling to educate the immune system. Proc Natl Acad Sci U S A. 2019;116(52):26157–66. https://doi.org/10.1073/pnas.1915978116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watson PS, Turner DP. Clinical experience with the meningococcal B vaccine, Bexsero((R)): prospects for reducing the burden of meningococcal serogroup B disease. Vaccine. 2016;34(7):875–80. https://doi.org/10.1016/j.vaccine.2015.11.057.

    Article  PubMed  Google Scholar 

  34. Luo Y, Friese OV, Runnels HA, Khandke L, Zlotnick G, Aulabaugh A, Gore T, Vidunas E, Raso SW, Novikova E, Byrne E, Schlittler M, Stano D, Dufield RL, Kumar S, Anderson AS, Jansen KU, Rouse JC. The dual role of lipids of the lipoproteins in Trumenba, a self-Adjuvanting vaccine against meningococcal meningitis B disease. AAPS J. 2016;18(6):1562–75. https://doi.org/10.1208/s12248-016-9979-x.

    Article  CAS  PubMed  Google Scholar 

  35. Kariluoto S, Aittamaa M, Korhola M, Salovaara H, Vahteristo L, Piironen V. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int J Food Microbiol. 2006;106(2):137–43. https://doi.org/10.1016/j.ijfoodmicro.2005.06.013.

    Article  CAS  PubMed  Google Scholar 

  36. Dutkiewicz J, Mackiewicz B, Lemieszek MK, Golec M, Milanowski J. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Ann Agric Environ Med. 2016;23(2):206–22. https://doi.org/10.5604/12321966.1203879.

    Article  CAS  PubMed  Google Scholar 

  37. Hebishima T, Matsumoto Y, Watanabe G, Soma G, Kohchi C, Taya K, Hayashi Y, Hirota Y. Oral administration of immunopotentiator from Pantoea agglomerans 1 (IP-PA1) improves the survival of B16 melanoma-inoculated model mice. Exp Anim. 2011;60(2):101–9.

    Article  CAS  PubMed  Google Scholar 

  38. Tsukioka D, Nishizawa T, Miyase T, Achiwa K, Suda T, Soma G, Mizuno D. Structural characterization of lipid A obtained from Pantoea agglomerans lipopolysaccharide. FEMS Microbiol Lett. 1997;149(2):239–44.

    Article  CAS  PubMed  Google Scholar 

  39. Pallach M, Di Lorenzo F, Facchini FA, Gully D, Giraud E, Peri F, Duda KA, Molinaro A, Silipo A. Structure and inflammatory activity of the LPS isolated from Acetobacter pasteurianus CIP103108. Int J Biol Macromol. 2018;119:1027–35. https://doi.org/10.1016/j.ijbiomac.2018.08.035.

    Article  CAS  PubMed  Google Scholar 

  40. Hashimoto M, Ozono M, Furuyashiki M, Baba R, Hashiguchi S, Suda Y, Fukase K, Fujimoto Y. Characterization of a novel d-Glycero-d-talo-oct-2-ulosonic acid-substituted lipid A moiety in the lipopolysaccharide produced by the acetic acid bacterium Acetobacter pasteurianus NBRC 3283. J Biol Chem. 2016;291(40):21184–94. https://doi.org/10.1074/jbc.M116.751271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Debarry J, Hanuszkiewicz A, Stein K, Holst O, Heine H. The allergy-protective properties of Acinetobacter lwoffii F78 are imparted by its lipopolysaccharide. Allergy. 2010;65(6):690–7. https://doi.org/10.1111/j.1398-9995.2009.02253.x.

    Article  CAS  PubMed  Google Scholar 

  42. Martin M, Michalek SM, Katz J. Role of innate immune factors in the adjuvant activity of monophosphoryl lipid A. Infect Immun. 2003;71(5):2498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kawahara K, Tsukano H, Watanabe H, Lindner B, Matsuura M. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun. 2002;70(8):4092–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shimoyama A, Saeki A, Tanimura N, Tsutsui H, Miyake K, Suda Y, Fujimoto Y, Fukase K. Chemical synthesis of Helicobacter pylori lipopolysaccharide partial structures and their selective proinflammatory responses. Chem Eur J. 2011;17(51):14464–74. https://doi.org/10.1002/chem.201003581.

    Article  CAS  PubMed  Google Scholar 

  45. Fujimoto Y, Shimoyama A, Suda Y, Fukase K. Synthesis and immunomodulatory activities of Helicobacter pylori lipophilic terminus of lipopolysaccharide including lipid A. Carbohydr Res. 2012;356:37–43. https://doi.org/10.1016/j.carres.2012.03.013.

    Article  CAS  PubMed  Google Scholar 

  46. Hynes SO, Ferris JA, Szponar B, Wadstrom T, Fox JG, O’Rourke J, Larsson L, Yaquian E, Ljungh A, Clyne M, Andersen LP, Moran AP. Comparative chemical and biological characterization of the lipopolysaccharides of gastric and enterohepatic helicobacters. Helicobacter. 2004;9(4):313–23. https://doi.org/10.1111/j.1083-4389.2004.00237.x.

    Article  CAS  PubMed  Google Scholar 

  47. Nielsen H, Birkholz S, Andersen LP, Moran AP. Neutrophil activation by helicobacter pylori lipopolysaccharides. J Infect Dis. 1994;170(1):135–9.

    Article  CAS  PubMed  Google Scholar 

  48. Perez-Perez GI, Shepherd VL, Morrow JD, Blaser MJ. Activation of human THP-1 cells and rat bone marrow-derived macrophages by Helicobacter pylori lipopolysaccharide. Infect Immun. 1995;63(4):1183–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Danesh J, Wong Y, Ward M, Muir J. Chronic infection with Helicobacter pylori, Chlamydia pneumoniae, or cytomegalovirus: population based study of coronary heart disease. Heart. 1999;81(3):245–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Triantafilou M, Gamper FG, Lepper PM, Mouratis MA, Schumann C, Harokopakis E, Schifferle RE, Hajishengallis G, Triantafilou K. Lipopolysaccharides from atherosclerosis-associated bacteria antagonize TLR4, induce formation of TLR2/1/CD36 complexes in lipid rafts and trigger TLR2-induced inflammatory responses in human vascular endothelial cells. Cell Microbiol. 2007;9(8):2030–9. https://doi.org/10.1111/j.1462-5822.2007.00935.x.

    Article  CAS  PubMed  Google Scholar 

  51. Yoshizaki H, Fukuda N, Sato K, Oikawa M, Fukase K, Suda Y, Kusumoto S. First Total Synthesis of the Re-Type Lipopolysaccharide This work was supported by the Research for the Future Program (No. 97L00502) from the Japan Society for the Promotion of Science. H.Y. is grateful for a JSPS Research Fellowship for Young Scientists (No. 1241) from the Japan Society for the Promotion of Science. The authors are grateful to Mr. Seiji Adachi for his skillful measurement of NMR spectra. Angew Chem Int Ed Engl. 2001;40(8):1475–80.

    Article  CAS  PubMed  Google Scholar 

  52. Imamura M, Tsutsui H, Yasuda K, Uchiyama R, Yumikura-Futatsugi S, Mitani K, Hayashi S, Akira S, Taniguchi S, Van Rooijen N, Tschopp J, Yamamoto T, Fujimoto J, Nakanishi K. Contribution of TIR domain-containing adapter inducing IFN-beta-mediated IL-18 release to LPS-induced liver injury in mice. J Hepatol. 2009;51(2):333–41. https://doi.org/10.1016/j.jhep.2009.03.027.

    Article  CAS  PubMed  Google Scholar 

  53. Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity. 2007;26(4):433–43. https://doi.org/10.1016/j.immuni.2007.03.008.

    Article  CAS  PubMed  Google Scholar 

  54. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514(7521):187–92. https://doi.org/10.1038/nature13683.

    Article  CAS  PubMed  Google Scholar 

  55. Obata T, Goto Y, Kunisawa J, Sato S, Sakamoto M, Setoyama H, Matsuki T, Nonaka K, Shibata N, Gohda M, Kagiyama Y, Nochi T, Yuki Y, Fukuyama Y, Mukai A, Shinzaki S, Fujihashi K, Sasakawa C, Iijima H, Goto M, Umesaki Y, Benno Y, Kiyono H. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci U S A. 2010;107(16):7419–24. https://doi.org/10.1073/pnas.1001061107.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fung TC, Bessman NJ, Hepworth MR, Kumar N, Shibata N, Kobuley D, Wang K, Ziegler CGK, Goc J, Shima T, Umesaki Y, Sartor RB, Sullivan KV, Lawley TD, Kunisawa J, Kiyono H, Sonnenberg GF. Lymphoid-tissue-resident commensal bacteria promote members of the IL-10 cytokine family to establish mutualism. Immunity. 2016;44(3):634–46. https://doi.org/10.1016/j.immuni.2016.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, Shibata N, Grunberg S, Sinha R, Zahm AM, Tardif MR, Sathaliyawala T, Kubota M, Farber DL, Collman RG, Shaked A, Fouser LA, Weiner DB, Tessier PA, Friedman JR, Kiyono H, Bushman FD, Chang KM, Artis D. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. 2012;336(6086):1321–5. https://doi.org/10.1126/science.1222551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shibata N, Kunisawa J, Hosomi K, Fujimoto Y, Mizote K, Kitayama N, Shimoyama A, Mimuro H, Sato S, Kishishita N, Ishii KJ, Fukase K, Kiyono H. Lymphoid tissue-resident Alcaligenes LPS induces IgA production without excessive inflammatory responses via weak TLR4 agonist activity. Mucosal Immunol. 2018;11(3):693–702. https://doi.org/10.1038/mi.2017.103.

    Article  CAS  PubMed  Google Scholar 

  59. Ingale S, Wolfert MA, Gaekwad J, Buskas T, Boons G-J. Robust immune responses elicited by a fully synthetic three-component vaccine. Nat Chem Biol. 2007;3(10):663–7. http://www.nature.com/nchembio/journal/v3/n10/suppinfo/nchembio.2007.25_S1.html

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Khan S, Weterings JJ, Britten CM, de Jong AR, Graafland D, Melief CJM, van der Burg SH, van der Marel G, Overkleeft HS, Filippov DV, Ossendorp F. Chirality of TLR-2 ligand Pam3CysSK4 in fully synthetic peptide conjugates critically influences the induction of specific CD8+ T-cells. Mol Immunol. 2009;46(6):1084–91. https://doi.org/10.1016/j.molimm.2008.10.006.

    Article  CAS  PubMed  Google Scholar 

  61. Kaiser A, Gaidzik N, Becker T, Menge C, Groh K, Cai H, Li Y-M, Gerlitzki B, Schmitt E, Kunz H. Fully synthetic vaccines consisting of tumor-associated MUC1 Glycopeptides and a Lipopeptide ligand of the toll-like receptor 2. Angew Chem Int Ed Engl. 2010;49(21):3688–92. https://doi.org/10.1002/anie.201000462.

    Article  CAS  PubMed  Google Scholar 

  62. Wilkinson BL, Day S, Malins LR, Apostolopoulos V, Payne RJ. Self-Adjuvanting multicomponent Cancer vaccine candidates combining per-glycosylated MUC1 Glycopeptides and the toll-like receptor 2 agonist Pam3CysSer. Angew Chem Int Ed Engl. 2011;50(7):1635–9. https://doi.org/10.1002/anie.201006115.

    Article  CAS  PubMed  Google Scholar 

  63. Wilkinson BL, Day S, Chapman R, Perrier S, Apostolopoulos V, Payne RJ. Synthesis and immunological evaluation of self-assembling and self-Adjuvanting Tricomponent Glycopeptide Cancer-vaccine candidates. Chem Eur J. 2012;18(51):16540–8. https://doi.org/10.1002/chem.201202629.

    Article  CAS  PubMed  Google Scholar 

  64. Lakshminarayanan V, Thompson P, Wolfert MA, Buskas T, Bradley JM, Pathangey LB, Madsen CS, Cohen PA, Gendler SJ, Boons GJ. Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc Natl Acad Sci U S A. 2012;109(1):261–6. https://doi.org/10.1073/pnas.1115166109.

    Article  PubMed  Google Scholar 

  65. Cai H, Chen M-S, Sun Z-Y, Zhao Y-F, Kunz H, Li Y-M. Self-adjuvanting synthetic antitumor vaccines from MUC1 Glycopeptides conjugated to T-cell epitopes from tetanus toxoid. Angew Chem Int Ed Engl. 2013;52(23):6106–10. https://doi.org/10.1002/anie.201300390.

    Article  CAS  PubMed  Google Scholar 

  66. Palitzsch B, Hartmann S, Stergiou N, Glaffig M, Schmitt E, Kunz H. A fully synthetic four-component antitumor vaccine consisting of a mucin Glycopeptide antigen combined with three different T-helper-cell epitopes. Angew Chem Int Ed Engl. 2014;53(51):14245–9. https://doi.org/10.1002/anie.201406843.

    Article  CAS  PubMed  Google Scholar 

  67. Thompson P, Lakshminarayanan V, Supekar NT, Bradley JM, Cohen PA, Wolfert MA, Gendler SJ, Boons G-J. Linear synthesis and immunological properties of a fully synthetic vaccine candidate containing a sialylated MUC1 glycopeptide. Chem Commun. 2015;51(50):10214–7. https://doi.org/10.1039/C5CC02199E.

    Article  CAS  Google Scholar 

  68. Liao G, Zhou Z, Suryawanshi S, Mondal MA, Guo Z. Fully synthetic self-Adjuvanting alpha-2,9-Oligosialic acid based conjugate vaccines against group C meningitis. ACS Cent Sci. 2016;2(4):210–8. https://doi.org/10.1021/acscentsci.5b00364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lewicky JD, Ulanova M, Jiang ZH. Synthesis of a TLR4 agonist-carbohydrate antigen conjugate as A self-adjuvanting cancer vaccine. ChemistrySelect. 2016;5:906–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Fukase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoyama, A., Fukase, K. (2021). Chemically Synthesized TLR4 Ligands, Their Immunological Functions, and Potential as Vaccine Adjuvant. In: Rossetti, C., Peri, F. (eds) The Role of Toll-Like Receptor 4 in Infectious and Non Infectious Inflammation. Progress in Inflammation Research, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-030-56319-6_1

Download citation

Publish with us

Policies and ethics