Skip to main content

Physical Activity Strategies

  • Chapter
  • First Online:
ASPC Manual of Preventive Cardiology

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 740 Accesses

Abstract

Numerous studies now suggest that cardiorespiratory fitness (CRF), expressed as metabolic equivalents (METs), is one of the strongest prognostic markers in persons with and without coronary heart disease (CHD), regardless of the level of coronary artery calcium or the coronary risk factor profile. Each 1-MET increase in CRF confers an ~15% decrease in mortality up to about 10 METs. In addition, physically active and/or fit people are more likely to have lower annual healthcare costs and rates of chronic disease, including incident heart failure. Accordingly, sedentary individuals should be counseled to become more physically active and/or fit by starting an endurance exercise program, increasing lifestyle activity, or both. When individuals can adopt this regimen comfortably, that is, moderate-intensity exercise, they should strive for the goal of more vigorous exercise over time, provided they remain asymptomatic. On the other hand, unaccustomed vigorous- to high-intensity physical activity (PA), especially in previously inactive/unfit individuals with known or occult CHD, can trigger acute cardiac events. Moreover, extreme endurance exercise training regimens are associated with potential cardiac maladaptations in some individuals, including accelerated coronary calcification and an increased likelihood to develop atrial fibrillation. This relationship has been increasingly described by a U- or reverse J-shaped dose-response curve. Despite these recent findings, the benefits of moderate-to-vigorous PA far outweigh the risks for the majority of the population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Powell KE, Thompson PD, Caspersen CJ, Kendrick JS. Physical activity and the incidence of coronary heart disease. Annu Rev Public Health. 1987;8:253–87.

    Article  CAS  PubMed  Google Scholar 

  2. Nocon M, Heiman T, Müller-Riemenschnieder F, et al. Association of physical activity with all-cause and cardiovascular mortality: a systemic review and meta-analysis. Eur J Cardiovasc Prev Rehabil. 2008;15(3):239–46.

    Article  PubMed  Google Scholar 

  3. Li Y, Pan A, Wang DD, et al. Impact of health lifestyle factors on life expectancies in the US population. Circulation. 2018;138(4):345–55.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Quindry JC, Franklin BA. Cardioprotective exercise and pharmacologic interventions as complementary antidotes to cardiovascular disease. Exerc Sport Sci Rev. 2018;46(1):5–17.

    Article  PubMed  Google Scholar 

  5. Thijssen DHJ, Redington A, George KP, Hopman MTE, Jones H. Association of exercise preconditioning with immediate cardioprotection: a review. JAMA Cardiol. 2018;3(2):169–76.

    Article  PubMed  Google Scholar 

  6. Franklin BA, Thompson PD, Al-Zaiti SS, et al. Exercise-related acute cardiovascular events and potential deleterious adaptions following long-term exercise training: placing the risks into perspective – an update. Circulation. 2020;141:e705–36.

    Google Scholar 

  7. Wen CP, Wai JP, Tsai MK, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet. 2011;378(9798):1244–53.

    Article  PubMed  Google Scholar 

  8. Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006;97(1):141–7.

    Article  PubMed  Google Scholar 

  9. Swain DP, Franklin BA. VO2 reserve and the minimal intensity for improving cardiorespiratory fitness. Med Sci Sports Exerc. 2002;34(1):152–7.

    Article  PubMed  Google Scholar 

  10. Franklin BA. Survival of the fittest: evidence for high-risk and cardioprotective fitness levels. Curr Sports Med Rep. 2002;1(5):257–9.

    Article  PubMed  Google Scholar 

  11. Franklin BA, Kaminsky LA, Kokkinos P. Quantitating the dose of physical activity in secondary prevention: relation of exercise intensity to survival. Mayo Clin Proc. 2018;93(9):1158–63.

    Article  PubMed  Google Scholar 

  12. Kokkinos P, Narayan P, Myers J, Franklin B. Cardiorespiratory fitness and the incidence of chronic disease. J Clin Exerc Physiol. 2018;7(2):37–45.

    Article  Google Scholar 

  13. Williams PT. Physical fitness and activity as separate heart disease risk factors: a meta-analysis. Med Sci Sports Exerc. 2001;33:754–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Myers J, Kaykha A, George S, Abella J, Zaheer N, Lear S, Yamazaki T, Froelicher V. Fitness versus physical activity patterns in predicting mortality in men. Am J Med. 2004;117:912–8.

    Article  PubMed  Google Scholar 

  15. Blair SN, Kohl HW III, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality; a prospective study of healthy men and women. JAMA. 1989;262:2395–401.

    Google Scholar 

  16. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. NEJM. 2002;346:793–801.

    Article  PubMed  Google Scholar 

  17. Gulati M, Pandey DK, Arnsdorf MF, Lauderdale DS, Thisted RA, Wicklund RH, Aj-Hani AJ, Black HR. Exercise capacity and the risk of death in women: the St. James Women Take Heart Project. Circulation. 2003;108:1554–9. Epub 2003 Sep15.

    Article  PubMed  Google Scholar 

  18. Vanhees L, Fagard R, Thijs L, Staessen J, Amery A. Prognostic significance of peak exercise capacity in patients with coronary artery disease. J Am Coll Cardiol. 1994;23(2):358–63.

    Article  CAS  PubMed  Google Scholar 

  19. Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301:2024–35.

    Article  CAS  PubMed  Google Scholar 

  20. Boden WE, Franklin BA, Wenger NK. Physical activity and structured exercise for patients with stable ischemic heart disease. JAMA. 2013;309(2):143–4.

    Article  CAS  PubMed  Google Scholar 

  21. Myers J, Doom R, King R, et al. Association between cardiorespiratory fitness and health care costs: the Veterans Exercise Study. Mayo Clin Proc. 2018;93(1):48–55.

    Article  PubMed  Google Scholar 

  22. Kokkinos P, Faselis C, Franklin B, et al. Cardiorespiratory fitness, body mass index and heart failure incidence. Eur J Heart Fail. 2019;21(4):436–44.

    Article  PubMed  Google Scholar 

  23. Radford NB, DeFina LF, Leonard D, et al. Cardiorespiratory fitness, coronary artery calcium, and cardiovascular disease events in a cohort of generally healthy middle-age men: results from the Cooper Center longitudinal study. Circulation. 2018;137(18):1888–95.

    Article  CAS  PubMed  Google Scholar 

  24. Wickramasinghe CD, Ayers CR, Das S, et al. Prediction of 20-year risk for cardiovascular mortality by fitness and risk factor levels: the Cooper longitudinal study. Cir Cardiovasc Qual Outcomes. 2014;7:597–602.

    Article  Google Scholar 

  25. Pitsavos C, Kavouras SA, Panagiotakos DB, et al. Physical activity status and acute coronary syndromes survival: the GREECS (Greek Study of Acute Coronary Syndromes) study. J Am Coll Cardiol. 2008;51:2034–9.

    Article  PubMed  Google Scholar 

  26. McCullough PA, Gallagher MJ, deJong AT, et al. Cardiorespiratory fitness and short-term complications after bariatric surgery. Chest. 2006;130(2):517–25.

    Article  PubMed  Google Scholar 

  27. Smith JL, Verril TA, Boura JA, et al. Effect of cardiorespiratory fitness and short-term morbidity and mortality after coronary artery bypass grafting. Am J Cardiol. 2013;112(8):1104–9.

    Article  PubMed  Google Scholar 

  28. Hoogeboom TJ, Dronkers JJ, Hulzebos EH, van Meeteren NL. Merits of exercise therapy before and after major surgery. Curr Opin Anaesthesiol. 2014;27(2):161–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barnard RJ, MacAlpin R, Kattus AA, Buckberg GD. Ischemic response to sudden strenuous exercise in healthy men. Circulation. 1973;48:936–42.

    Article  CAS  PubMed  Google Scholar 

  30. Dimsdale JE, Hartley LH, Guiney T, et al. Postexercise peril. Plasma catecholamines and exercise. JAMA. 1984;251:630–2.

    Article  CAS  PubMed  Google Scholar 

  31. Karvonen M, Kentala K, Mustala O. The effects of training heart rate: a longitudinal study. Ann Med Exp Biol. 1957;35:307–15.

    CAS  Google Scholar 

  32. Davis JA, Convertino VA. A comparison of heart rate methods for predicting endurance training intensity. Med Sci Sports. 1975;7:295–8.

    CAS  PubMed  Google Scholar 

  33. Swain DP, Leutholtz BC, King ME, et al. Relationship of % heart rate reserve and % VO2 reserve in treadmill exercise. Med Sci Sports Exerc. 1998;30:318–21.

    Article  CAS  PubMed  Google Scholar 

  34. Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43:1575–81.

    Article  PubMed  Google Scholar 

  35. Swain DP. Moderate or vigorous intensity exercise: which is better for improving aerobic fitness? Prev Cardiol. 2005;8:55–8.

    Article  PubMed  Google Scholar 

  36. Swain DP, Franklin BA. Is there a threshold intensity for aerobic training in cardiac patients? Med Sci Sports Exerc. 2002;34:1071–5.

    Article  PubMed  Google Scholar 

  37. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–81.

    CAS  PubMed  Google Scholar 

  38. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A, American College of Sports Medicine, American Heart Association. Physical activity and public health: updated recommendation for adults from the American Heart Association. Circulation. 2007;116:1081–93.

    Article  PubMed  Google Scholar 

  39. Mittleman MA, Maclure M, Tofler GH, Sherwood JB, Goldberg RJ, Muller JE. Triggering of acute myocardial infarction by heavy physical exertion. Protection against triggering by regular exertion. Determinants of Myocardial Infarction Onset Study Investigators. N Engl J Med. 1993;329:1677–83.

    Article  CAS  PubMed  Google Scholar 

  40. Reibe D, Franklin BA, Thompson PD, et al. Updating ACSM’s recommendation for exercise participation health screening. Med Sci Sports Exerc. 2015;47(11):2473–9.

    Article  CAS  Google Scholar 

  41. Glazer NL, Lyass A, Esliger DW, Blease SJ, Freedom PS, Massaro JM, Murabilo JM, Vasan RS. Sustained and shorter bouts of physical activity are related to cardiovascular health. Med Sci Sports Exerc. 2013;45:109–15.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fan JX, Brown BB, Hanson H, Kowaleski-Jones L, Smith KR, Zack CD. Moderate to vigorous physical activity and weight outcomes: does every minute count? Am J Health Promot. 2013;28:41–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Squires RW, Kaminsky LA, Porcari JP, Ruff JE, Savage PD, Williams MA. Progression of exercise training in early outpatient cardiac rehabilitation: an official statement from the American Association of Cardiovascular and Pulmonary Rehabilitation. J Cardiopulm Rehabil Prev. 2018;38:139–46.

    Article  PubMed  Google Scholar 

  44. Kaminsky LA, Arena R, Myers J. Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing data from the Fitness Registry and the Importance of Exercise National Database. Mayo Clin Proc. 2015;90:1515–23.

    Article  PubMed  Google Scholar 

  45. Franklin BA, Gordon NF. Contemporary diagnosis and management in cardiovascular exercise, vol. 291. Newton (PA): Handbooks in Health Care Company; 2009.

    Google Scholar 

  46. Wicks JR, Oldridge NB, Nielsen LK, et al. HR index – a simple method for the prediction of oxygen uptake. Med Sci Sports Exerc. 2011;43:2005–12.

    CAS  PubMed  Google Scholar 

  47. Nef BM, Gutvik CR, Lavie CJ, Nauman J, Wisloff U. Personalized Activity Intelligence (PAJ) for prevention of cardiovascular disease and promotion of physical activity. Am J Med. 2017;130:328–36.

    Article  Google Scholar 

  48. Fowler GA. Stop counting 10,000 steps: check your personal activity intelligence. Wall Street J. 2016: New York, January 20.

    Google Scholar 

  49. George J, Abdulla RK, Yeow R, Aggarwal A, Boura J, Wegner J, Franklin BA. Daily energy expenditure and its relation to health care costs in patients undergoing ambulatory electrocardiographic monitoring. Am J Cardiol. 2017;119:658–63.

    Article  PubMed  Google Scholar 

  50. Franklin BA. Aerobic exercise training programs for the upper body. Med Sci Sports Exerc. 1989;21(5 suppl):S141–48.

    Google Scholar 

  51. Williams MA, Haskell WI, Ades PA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2007;16:572–84.

    Article  Google Scholar 

  52. McCarty N, McKelvie RS, Martin J, et al. Weight-training-induced attenuation of the circulatory response of older males to weight lifting. J Appl Physiol. 1993;74:1056–60.

    Article  Google Scholar 

  53. Grafe K, Bendick P, Burr M, Boura J, Franklin BA. Effects of resistance training on vascular and hemodynamic responses in patients with coronary artery disease. Res Q Exerc Sport. 2018; https://doi.org/10.1080/02701367.2018.1519385.

  54. Hickson RC, Rosenkoetter MA, Brown MM. Strength training effects on aerobic power and short-term endurance. Med Sci Sports Exerc. 1980;12:336–9.

    Article  CAS  PubMed  Google Scholar 

  55. Fitzgerald SJ, Barlow CE, Kampert JB, et al. Muscular fitness and all-cause mortality: prospective observations. J Phys Act Health. 2004;1:7.

    Article  Google Scholar 

  56. Jurca R, Lamonte MJ, Barlow CE, et al. Association of muscular strength with incidence of metabolic syndrome in men. Med Sci Sports Exerc. 2005;37:1849–55.

    Article  PubMed  Google Scholar 

  57. Dunn AL, Marcus BH, Kampert JB, et al. Comparison of lifestyle and cardiorespiratory fitness: a randomized trial. JAMA. 1999;281:327–34.

    Article  CAS  PubMed  Google Scholar 

  58. Andersen RE, Wadden TA, Bartlett SJ, et al. Effects of lifestyle activity vs structured aerobic exercise in obese women: a randomized trial. JAMA. 1999;281:335–40.

    Article  CAS  PubMed  Google Scholar 

  59. US Department of Health and Human Services. 2008 Physical Activity Guidelines for Americans. http://www.health.gov/paguidelines/pdf/paguide.pdf. Accessed 14 Jan 2012.

  60. Bravata DM, Smith-Spangler C, Sundaram V, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298:2296–304.

    Article  CAS  PubMed  Google Scholar 

  61. Helgerud J, Hǿydal K, Wang E, et al. Aerobic high-intensity intervals improve VO2 max more than moderate training. Med Sci Sports Exerc. 2007;39:665–71.

    Article  PubMed  Google Scholar 

  62. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PN, Tjonna AE, Helgrud J, Slordahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen O, Skjaerpe T. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115:3086–94.

    Article  PubMed  Google Scholar 

  63. Liou K, Ho S, Fildes J, Ooi S-Y. High intensity interval versus moderate intensity continuous training in patients with coronary heart disease: a meta-analysis of physiological and clinical parameters. Heart Lung Circ. 2016;25:166–74.

    Article  PubMed  Google Scholar 

  64. Rognmo Ǿ, Moholdt T, Bakken H, et al. Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation. 2012;126:1436–40.

    Article  PubMed  Google Scholar 

  65. Quindry JC, Franklin BA, Chapman M, et al. Benefits of risks of high-intensity interval training in patients with coronary artery disease. Am J Cardiol. 2019;123:1370–7.

    Article  PubMed  Google Scholar 

  66. Mons U, Hahmann H, Brenner H. A reverse J-shaped association of leisure time physical activity with prognosis in patients with stable coronary heart disease: evidence from a large cohort with repeated measurements. Heart. 2014;100(13):1043–9.

    Article  PubMed  Google Scholar 

  67. Williams PT, Thompson PD. Increased cardiovascular disease mortality associated with excessive exercise in heart attack survivors. Mayo Clin Proc. 2014;89:1187–94.

    Article  PubMed  Google Scholar 

  68. Armstrong ME, Green J, Reeves GK, et al. Frequent physical activity may not reduce vascular disease risk as much as moderate activity: large prospective study of women in the United Kingdom. Circulation. 2015;131:721–9.

    Article  CAS  PubMed  Google Scholar 

  69. Eijsvogels TMH, Thompson PD, Franklin BA. The “extreme exercise hypothesis”: recent findings and cardiovascular health implications. Curr Treat Options Cardiovasc Med. 2018;20:84.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chadda A, Jackson EA, Richardson CR, Franklin BA. Technology to help promote physical activity. Am J Cardiol. 2017;119:149–52.

    Article  Google Scholar 

  71. Liebermann DA, Chamberlain B, Medina E, Franklin BA, Sanner BM, Vafiadis DK. The power of play: innovations in getting active summit 2011. Circulation. 2011;123:2507–16.

    Article  Google Scholar 

  72. Miychi M, Yamamoto K, Ohkawara K, Tanaka S. METs in adults while playing active video games: a metabolic chamber study. Med Sci Sports Exerc. 2010;42:1149–53.

    Google Scholar 

  73. Roberts WC. Exercise training: an agent with lipid-lowering, antihypertensive, positive inotropic, negative chronotropic, vasodilating, diuretic, anorexigenic, weight-reducing, cathartic, hypoglycemic, tranquilizing, hypnotic and antidepressive qualities. Am J Cardiol. 1984;53(1):261–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry A. Franklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Franklin, B.A. (2021). Physical Activity Strategies. In: Wong, N.D., Amsterdam, E.A., Toth, P.P. (eds) ASPC Manual of Preventive Cardiology. Contemporary Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-56279-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56279-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56278-6

  • Online ISBN: 978-3-030-56279-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics