Skip to main content

Isothermal and Non-isothermal Crystallization in Liquid Crystals as Seen by Broadband Dielectric Spectroscopy and Differential Scanning Calorimetry

  • Chapter
  • First Online:
Crystallization as Studied by Broadband Dielectric Spectroscopy

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

  • 483 Accesses

Abstract

Being composed of shape-anisotropic molecules, liquid crystals (LCs) differ from simple liquids in that they demonstrate a tendency to orientate in specific directions and form various mesophases. Upon cooling, these partially ordered liquid crystalline phases can either vitrify or crystallize. Upon heating from a glassy state, LCs, like other low molecular weight systems and polymers, have been found to undergo so-called cold crystallization. This chapter discusses the findings of broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC) studies of the isothermal and non-isothermal crystallization kinetics of the supercooled nematic (N) and chiral nematic (N*) states of, respectively, 2,7-bis(4-pentylphenyl)-9,9-diethyl-9H-fluorene (5P-EtFLEt-P5) and S,S-2,7-bis(4-pentylphenyl)-9,9-dimethylbutyl-9H-fluorene (5P-Am*FLAm*P5). The isothermal melt and cold crystallization processes at selected temperatures Tc above the glass transition temperature Tg (1.07Tg ≤ Tc ≤ 1.17Tg) are compared in 5P-EtFLEt-P5. It was found that 5P-EtFLEt-P5 and 5P-Am*FLAm*P5 display different types of non-isothermal cold crystallization. Finally, the paper discusses the crystallization behavior occurring in the well-ordered smectic B phase (SmB) of 4-n-butyloxybenzylidene-4′-n′-octylaniline (BBOA) under various thermal conditions. The DSC analysis revealed two different crystallization mechanisms for fast and slow cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5P-EtFLEt-P5:

2,7-Bis(4-pentylphenyl)-9,9-diethyl-9H-fluorene

5P-Am*FLAm*P5:

S,S-2,7-bis(4-pentylphenyl)-9,9-dimethylbutyl-9H-fluorene

BBOA:

4-N-butyloxybenzylidene-4′-n′-octylaniline

BDS:

Broadband dielectric spectroscopy

CONDIS:

Conformationally disordered crystals

DSC:

Differential scanning calorimetry

GN:

Glass of nematic phase

GN*:

Glass of chiral nematic phase

HN:

Havriliak–Negami

Is:

Isotropic state

LCs:

Liquid crystals

POM:

Polarizing optical microscopy

N:

Nematic

N*:

Chiral nematic

ODIC:

Orientationally disordered crystal

SmB:

Smectic B

VFT:

Vogel–Fulcher–Tammann

References

  1. Vallamkondu J, Corgiat E, Buchaiah G, Kandimalla R, Reddy P (2018) Cancers (Basel) 10:462

    Article  CAS  Google Scholar 

  2. Woltman SJ, Jay GD, Crawford GP (2007) Nat Mater 6:929

    Article  CAS  Google Scholar 

  3. Woltman SJ, Jay GD, Crawford GP (2007) Liquid crystals: frontiers in biomedical applications. WORLD SCIENTIFIC

    Google Scholar 

  4. Stevenson CL, Bennett DB, Lechuga-Ballesteros D (2005) J Pharm Sci 94:1861

    Article  CAS  Google Scholar 

  5. Schenning APHJ, Crawford GP, Broer DJ (eds) (2017) Liquid crystal sensors, Series: liquid crystals book series. CRC Press, Boca Raton, FL

    Google Scholar 

  6. Sorai M, Seki S (1973) Mol Cryst Liq Cryst 23:299

    Article  CAS  Google Scholar 

  7. Johari GP (1982) Philos Magaz B 46:549

    Article  CAS  Google Scholar 

  8. Uhrich D, Aimiuwu V, Ktorides P, LaPrice W (1975) Phys Rev A 12:211

    Article  CAS  Google Scholar 

  9. Jasiurkowska-Delaporte M, Napolitano S, Leys J, Juszyńska-Gałązka E, Wübbenhorst M, Massalska-Arodź M (2016) J Phys Chem B 120:12160

    Article  CAS  Google Scholar 

  10. Jasiurkowska M, Ściesiński J, Czub J, Massalska-Arodź M, Pełka R, Juszyńska E, Yamamura Y, Saito K (2009) J Phys Chem B 113:7435

    Google Scholar 

  11. Jasiurkowska M, Zieliński PM, Massalska-Arodź M, Yamamura Y, Saito K (2011) J Phys Chem B 115:12327

    Article  CAS  Google Scholar 

  12. Jasiurkowska-Delaporte M, Massalska-Arodź M (2017) J Mol Liq 241:355

    Article  CAS  Google Scholar 

  13. Leslie-Pelecky DL, Birge NO (1994) Phys Rev B 50:13250

    Article  CAS  Google Scholar 

  14. Massalska-Arodź M, Williams G, Thomas DK, Jones WJ, Dabrowski R (1999) J Phys Chem B 103:4197

    Article  Google Scholar 

  15. Jasiurkowska-Delaporte M, Rozwadowski T, Juszyńska-Gałązka E (2019) Crystals 9:1

    Article  CAS  Google Scholar 

  16. Padmaja S, Ajita N, Srinivasulu M, Girish SR, Pisipati VGKM, Potukuchi DM (2010) Zeitschrift Fur Naturforsch - Sect a J Phys Sci 65:733

    Article  CAS  Google Scholar 

  17. Rozwadowski T, Massalska-Arodź M, Kolek Ł, Grzybowska K, Bąk A, Chłędowska K (2015) Cryst Growth Des 15:2891

    Article  CAS  Google Scholar 

  18. Georgopoulos D, Kripotou S, Argyraki E, Kyritsis A, Pissis P (2015) Mol Cryst Liq Cryst 611:197

    Article  CAS  Google Scholar 

  19. Deptuch A, Jaworska-Gołąb T, Marzec M, Urbańska M, Tykarska M (2019) Phase Transit 92:126

    Article  CAS  Google Scholar 

  20. Jasiurkowska-Delaporte M, Rozwadowski T, Dmochowska E, Juszyńska-Gałązka E, Kula P, Massalska-Arodź M (2018) J Phys Chem B 122:10627

    Article  CAS  Google Scholar 

  21. Aldred MP, Eastwood AJ, Kelly SM, Vlachos P, Contoret AEA, Farrar SR, Mansoor B, O’Neill M, Tsoi WC (2004) Chem Mater 16:4928

    Article  CAS  Google Scholar 

  22. Dmochowska E, Bombalska A, Kula P (2019) Liq Cryst 1

    Google Scholar 

  23. Rao NVS, Potukuchi DM, Pisipati VGKM (1991) Mol Cryst Liq Cryst 196:71

    Article  CAS  Google Scholar 

  24. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy

    Google Scholar 

  25. Jonscher AK (1981) J Mater Sci 16:2037

    Google Scholar 

  26. Jonsher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press, London

    Google Scholar 

  27. Wübbenhorst M, Van Turnhout J (2002) J Non Cryst Solids 305:40

    Article  Google Scholar 

  28. Van Turnhout J, Wübbenhorst M (2002) J Non Cryst Solids 305:50

    Article  Google Scholar 

  29. Syme CD, Mosses J, González-Jiménez M, Shebanova O, Walton F, Wynne K (2017) Sci Rep 7:42439

    Article  CAS  Google Scholar 

  30. Jasiurkowska-Delaporte M, Rozwadowski T, Juszyńska-Gała̧zka E, Krawczyk J, Dmochowska E, Kula P, Massalska-Arodź M (2019) Eur Phys J E 42:121

    Google Scholar 

  31. Sharma RP, Green PF (2017) Macromolecules 50:6617

    Article  CAS  Google Scholar 

  32. Madkour S, Szymoniak P, Radnik J, Schönhals A (2017) ACS Appl Mater Interfaces 9:37289

    Article  CAS  Google Scholar 

  33. Bohmer R, Ngai KL, Angell CA, Plazek DJ (1993) J Chem Phys 99:4201

    Article  Google Scholar 

  34. Shintani H, Tanaka H (2006) Nat Phys 2:200

    Article  CAS  Google Scholar 

  35. Kawakami K, Harada T, Yoshihashi Y, Yonemochi E, Terada K, Moriyama H (2015) J Phys Chem B 119:4873

    Article  CAS  Google Scholar 

  36. Meersman F, Geukens B, Wübbenhorst M, Leys J, Napolitano S, Filinchuk Y, Van Assche G, Van Mele B, Nies E (2010) J Phys Chem B 114:13944

    Article  CAS  Google Scholar 

  37. Starkweather HW, Avakian P (1992) J Polym Sci Part B Polym Phys 30:637

    Article  CAS  Google Scholar 

  38. Descamps M, Dudognon E (2014) J Pharm Sci 103:2615

    Article  CAS  Google Scholar 

  39. Jackson KA (2004) Kinetic processes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG

    Book  Google Scholar 

  40. Kim SO, Koo CM, Chung IJ, Jung HT (2001) Macromolecules 34:8961

    Article  CAS  Google Scholar 

  41. Gutzow JWP, Ivan S, Schmelzer (1995) The vitreous state: thermodynamics, structure, rheology, and crystallization, 2nd edn. Springer, Berlin

    Google Scholar 

  42. Sanz A, Niss K (2017) Cryst Growth Des 17:4628

    Article  CAS  Google Scholar 

  43. Henderson DW (1979) J Non Cryst Solids 30:301

    Article  CAS  Google Scholar 

  44. Ozawa T (1971) Polymer (Guildf) 12:150

    Article  CAS  Google Scholar 

  45. Kissinger HE (1956) J Res Natl Bur Stand (1934) 57:217

    Google Scholar 

  46. Augis JA, Bennett JE (1978) J Therm Anal Calorim 13:283

    Article  CAS  Google Scholar 

  47. Górecka E, Chen L, Pyżuk W, Krówczyński A, Kumar S (1994) Phys Rev E 50:2863

    Article  Google Scholar 

  48. Juszyńska E, Jasiurkowska M, Massalska-Arodź M, Takajo D, Inaba A (2011) Mol Cryst Liq Cryst 540:127

    Article  CAS  Google Scholar 

  49. Liu Y, Wang L, He Y, Li S (1998) J Polym Sci Part B Polym Phys 36:1305

    Article  Google Scholar 

  50. Liu T, Mo Z, Wang S, Zhang H (1997) Polym Eng Sci 33:568

    Article  Google Scholar 

  51. Zhou D, Zhang GGZ, Law D, Grant DJW, Schmitt EA (2008) Mol Pharm 5:927

    Article  CAS  Google Scholar 

  52. Napolitano S, Wübbenhorst M (2006) Macromolecules 39:5967

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a National Science Centre (Grant SONATA11: UMO-2016/21/D/ST3/01299). I thank all my co-workers, especially Dr. T. Rozwadowski for his valuable contribution to studies on crystallization and Dr. E. Juszyńska-Gałązka for DSC measurements and data discussion. I would also like to thank Prof. M. Massalska-Arodź for stimulating discussions and critical reading of the chapter. The author acknowledges Prof. P. Kula and M. Sc. E. Dmochowska for synthesizing the investigated materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Jasiurkowska-Delaporte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jasiurkowska-Delaporte, M. (2020). Isothermal and Non-isothermal Crystallization in Liquid Crystals as Seen by Broadband Dielectric Spectroscopy and Differential Scanning Calorimetry. In: Ezquerra, T.A., Nogales, A. (eds) Crystallization as Studied by Broadband Dielectric Spectroscopy. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-030-56186-4_5

Download citation

Publish with us

Policies and ethics