Skip to main content

Does Curcumin Have an Anticaries Effect? A Systematic Review of In Vitro Studies

  • Chapter
  • First Online:
Studies on Biomarkers and New Targets in Aging Research in Iran

Abstract

Background: Dental caries is one of the most important oral health problems and a common infectious microbial disease. Streptococcus mutans (S. mutans) has been regarded as the primary etiologic factor in the formation of dental caries. Curcumin (CUR) has an antibacterial action and could be used in the eradication of S. mutans to control dental caries. This systematic review was undertaken with the aim of evaluating the anticaries effect of CUR.

Methods: A comprehensive search was conducted in the PubMed/Medline, Cochrane - CENTRAL, and Scopus databases. Based on the PICO model, studies which evaluated the anticaries effects of CUR up until 24 February 2020 with language restrictions were selected for this systematic review.

Results: From 753 papers found, 13 met the eligibility criteria and were included. In 12 out of 13 included studies, CUR had significant antibacterial and anticaries effects. CUR had inhibitory effects on S. mutans growth, acid production, ATPase and sortase A activity, biomass, viability and metabolism reduction of biofilm, reduced exopolysaccharide production of biofilms, changes in biofilm structure, and had anti-adhesion effects against S. mutans.

Conclusion: This systematic review suggests promising antibacterial and anticaries effects of CUR including inhibition of S. mutans growth, acid production, ATPase and sortase A activity. This review provides unique information regarding the potential role of CUR in the prevention and treatment of dental carries as a natural, accessible, safe, and inexpensive agent to increase oral and dental health. However, clinical randomized controlled trials are needed to confirm these results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramakrishna Y, Goda H, Baliga MS, Munshi AK (2011) Decreasing cariogenic bacteria with a natural, alternative prevention therapy utilizing phytochemistry (plant extracts). J Clin Pediatr Dent 36(1):55–63

    Article  CAS  PubMed  Google Scholar 

  2. Petersen PE (2003) The World Oral Health Report 2003: continuous improvement of oral health in the 21st century—the approach of the WHO Global Oral Health Programme. Community Dent Oral Epidemiol 31:3–24

    Article  PubMed  Google Scholar 

  3. Li B, Li X, Lin H, Zhou Y (2018) Curcumin as a promising antibacterial agent: effects on metabolism and biofilm formation in S. mutans. Biomed Res Int 2018:4508709. https://doi.org/10.1155/2018/4508709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Caufield PW, Griffen AL (2000) Dental caries: an infectious and transmissible disease. Pediatr Clin N Am 47(5):1001–1019

    Article  CAS  Google Scholar 

  5. Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50(4):353–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee KH, Kim BS, Keum KS, Yu HH, Kim YH, Chang BS et al (2011) Essential oil of Curcuma longa inhibits Streptococcus mutans biofilm formation. J Food Sci 76(9):H226–H230

    Article  CAS  PubMed  Google Scholar 

  7. Shetty RN, Shetty SB, Janardhanan S, Shetty S, Shetty S, Raj K (2017) Comparative evaluation of effect of use of toothbrush with paste and munident on levels of Streptococcus mutans and gingival health in children: an in vivo study. J Indian Soc Pedod Prev Dent 35(2):162–166

    Article  PubMed  Google Scholar 

  8. Basir L, Kalhori S, Zare Javid A, Khaneh Masjedi M (2018) Anticaries activity of curcumin on decay process in human tooth enamel samples (in vitro study). J Natl Med Assoc 110(5):486–490

    Article  PubMed  Google Scholar 

  9. Samaranayake L (2002) Microbiology of dental caries. Essential microbiology for dentistry

    Google Scholar 

  10. Joycharat N, Limsuwan S, Subhadhirasakul S, Voravuthikunchai SP, Pratumwan S, Madahin I et al (2012) Anti-Streptococcus mutans efficacy of Thai herbal formula used as a remedy for dental caries. Pharm Biol 50(8):941–947

    Article  PubMed  Google Scholar 

  11. Elgamily H, Safy R, Makharita R (2019) Influence of medicinal plant extracts on the growth of oral pathogens Streptococcus mutans and Lactobacillus acidophilus: an in-vitro study. Open Access Maced J Med Sci 7(14):2328–2334

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miller WD (1902) The presence of bacterial plaques on the surface of teeth and their significance. Dent Cosmos 44:425–446

    Google Scholar 

  13. Bowen W, Koo H (2011) Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45(1):69–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith E, Spatafora G (2012) Gene regulation in S. mutans: complex control in a complex environment. J Dent Res 91(2):133–141

    Article  CAS  PubMed  Google Scholar 

  15. Rawashdeh RY, Malkawi HI, Al-Hiyasat AS, Hammad MM (2008) A fast and sensitive molecular detection of Streptococcus mutans and Actinomyces viscosus from dental plaques. Jordan J Biol Sci 1(3)

    Google Scholar 

  16. Wiater A, Choma A, Szczodrak J (1999) Insoluble glucans synthesized by cariogenic streptococci: a structural study. J Basic Microbiol 39(4):265–273

    Article  CAS  PubMed  Google Scholar 

  17. Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369(9555):51–59

    Article  CAS  PubMed  Google Scholar 

  18. Lemos JA, Quivey RG Jr, Koo H, Abranches J (2013) Streptococcus mutans: a new Gram-positive paradigm? Microbiology 159.(Pt 3:436–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song J, Choi B, Jin EJ, Yoon Y, Choi KH (2012) Curcumin suppresses Streptococcus mutans adherence to human tooth surfaces and extracellular matrix proteins. Eur J Clin Microbiol Infect Dis 31(7):1347–1352

    Article  CAS  PubMed  Google Scholar 

  20. Pandit S, Kim HJ, Kim JE, Jeon JG (2011) Separation of an effective fraction from turmeric against Streptococcus mutans biofilms by the comparison of curcuminoid content and anti-acidogenic activity. Food Chem 126(4):1565–1570

    Article  CAS  PubMed  Google Scholar 

  21. Sheen S, Addy M (2003) An in vitro evaluation of the availability of cetylpyridinium chloride and chlorhexidine in some commercially available mouthrinse products. Br Dent J 194(4):207–210

    Article  CAS  PubMed  Google Scholar 

  22. Neturi RS, Srinivas R, Vikram Simha B, Sandhya Sree Y, Chandra Shekar T, Kumar S (2014) Effects of green tea on Streptococcus mutans counts-a randomised control trail. J Clin Diagn Res 8(11):ZC128–ZC130

    PubMed  PubMed Central  Google Scholar 

  23. Van der Weijden G, Timmer C, Timmerman M, Reijerse E, Mantel M, Van der Velden U (1998) The effect of herbal extracts in an experimental mouthrinse on established plaque and gingivitis. J Clin Periodontol 25(5):399–403

    Article  PubMed  Google Scholar 

  24. Jeng JH, Hsieh C, Lan W, Chang M, Lin S, Hahn L, Kuo M (1998) Cytotoxicity of sodium fluoride on human oral mucosal fibroblasts and its mechanisms. Cell Biol Toxicol 14(6):383–389

    Article  CAS  PubMed  Google Scholar 

  25. Ciancio SG (2007) Improving our patients' oral health: the role of a triclosan/copolymer/fluoride dentifrice. Compend Contin Educ Dent 28(4):178–180. 182–173

    PubMed  Google Scholar 

  26. Phan TN, Marquis RE (2006) Triclosan inhibition of membrane enzymes and glycolysis of Streptococcus mutans in suspensions and biofilms. Can J Microbiol 52(10):977–983

    Article  CAS  PubMed  Google Scholar 

  27. Goodson J, Tanner A (1992) Antibiotic resistance of the subgingival microbiota following local tetracycline therapy. Oral Microbiol Immunol 7(2):113–117

    Article  CAS  PubMed  Google Scholar 

  28. Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264(5157):375–382

    Article  CAS  PubMed  Google Scholar 

  29. Preus HR, Lassen J, Aass AM, Ciancio SG (1995) Bacterial resistance following subgingival and systemic administration of minocycline. J Clin Periodontol 22(5):380–384

    Article  CAS  PubMed  Google Scholar 

  30. Gilbert P, Das J, Foley I (1997) Biofilm susceptibility to antimicrobials. Adv Dent Res 11(1):160–167

    Article  CAS  PubMed  Google Scholar 

  31. Tenover FC (2001) Development and spread of bacterial resistance to antimicrobial agents: an overview. Clin Infect Dis 33(Suppl 3):S108–S115

    Article  CAS  PubMed  Google Scholar 

  32. Roberts MC (2002) Antibiotic toxicity, interactions and resistance development. Periodontol 28(1):280–297

    Article  Google Scholar 

  33. Knoll-Köhler E, Stiebel J (2002) Amine fluoride gel affects the viability and the generation of superoxide anions in human polymorphonuclear leukocytes: an in vitro study. Eur J Oral Sci 110(4):296–301

    Article  PubMed  Google Scholar 

  34. Lachenmeier DW (2008) Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J Occup Med Toxicol 3(1):26. https://doi.org/10.1186/1745-6673-3-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McCullough M, Farah C (2008) The role of alcohol in oral carcinogenesis with particular reference to alcohol-containing mouthwashes. Aust Dent J 53(4):302–305

    Article  CAS  PubMed  Google Scholar 

  36. Neumegen RA, Fernández-Alba AR, Chisti Y (2005) Toxicities of triclosan, phenol, and copper sulfate in activated sludge. Environ Toxicol: Int J 20(2):160–164

    Article  CAS  Google Scholar 

  37. Chung J, Choo J, Lee M, Hwang JK (2006) Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. Phytomedicine 13(4):261–266

    Article  CAS  PubMed  Google Scholar 

  38. Marc G, Araniciu C, Oniga SD, Vlase L, Pîrnău A, Duma M et al (2018) New N-(oxazolylmethyl)-thiazolidinedione active against Candida albicans biofilm: potential Als proteins inhibitors. Molecules 23(10):E2522. https://doi.org/10.3390/molecules23102522

    Article  CAS  PubMed  Google Scholar 

  39. Tichy J, Novak J (1998) Extraction, assay, and analysis of antimicrobials from plants with activity against dental pathogens (Streptococcus sp.). J Altern Complement Med 4(1):39–45

    Article  CAS  PubMed  Google Scholar 

  40. Badria FA, Zidan OA (2004) Natural products for dental caries prevention. J Med Food 7(3):381–384

    Article  CAS  PubMed  Google Scholar 

  41. Li X, Yin L, Ramage G, Li B, Tao Y, Zhi Q, Lin H, Zhou Y (2019) Assessing the impact of curcumin on dual-species biofilms formed by Streptococcus mutans and Candida albicans. Microbiology 8(12):e937. https://doi.org/10.1002/mbo3.937

    Article  Google Scholar 

  42. Iranshahi M, Sahebkar A, Hosseini ST, Takasaki M, Konoshima T, Tokuda H (2010) Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine 17(3–4):269–273 

    Google Scholar 

  43. Teymouri M, Pirro M, Johnston TP, Sahebkar A (2017) Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. BioFactors 43(3):331-346.

    Google Scholar 

  44. Shahabipour F, Caraglia M, Majeed M, Derosa G, Maffioli P, Sahebkar A (2017) Naturally occurring anti-cancer agents targeting EZH2. Cancer Lett 400:325–335. https://doi.org/10.1016/j.canlet.2017.03.020. Epub 2017 Mar 18. PMID: 28323035

  45. Dubey N, Kumar R, Tripathi P (2004) Global promotion of herbal medicine: India's opportunity. Curr Sci 86(1):37–41

    Google Scholar 

  46. Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A (2016) Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol Diagn Ther 20(4):335–345

    Article  CAS  PubMed  Google Scholar 

  47. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10(10):813–829

    Article  CAS  PubMed  Google Scholar 

  49. Kim HS (2005) Do not put too much value on conventional medicines. J Ethnopharmacol 100(1–2):37–39

    Article  PubMed  Google Scholar 

  50. Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G (2012) Curcumin-from molecule to biological function. Angew Chem Int Ed 51(22):5308–5332

    Article  CAS  Google Scholar 

  51. Liu Q, Loo WT, Sze S, Tong Y (2009) Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription. Phytomedicine 16(10):916–922

    Article  CAS  PubMed  Google Scholar 

  52. Singla A, Kaur I (2003) Inhibitory effect of dibenzoylmethane on mutagenicity of food-derived heterocyclic amine mutagens. Phytomedicine 10(6–7):575–582

    PubMed  Google Scholar 

  53. Ruby AJ, Kuttan G, Babu KD, Rajasekharan K, Kuttan R (1995) Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 94(1):79–83

    Article  CAS  PubMed  Google Scholar 

  54. Bagherniya M, Nobili V, Blesso CN, Sahebkar A (2018) Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: a clinical review. Pharmacol Res 130:213–240

    Article  CAS  PubMed  Google Scholar 

  55. Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A (2018) Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made jack-of-all-trades? J Cell Physiol 233(2):830–848

    Article  CAS  PubMed  Google Scholar 

  56. Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A (2019) Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr 59(1):89–101

    Article  CAS  PubMed  Google Scholar 

  57. Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J Cell Physiol. 2018 Jan;233(1):141-152. https://doi.org/10.1002/jcp.25756. Epub 2017 Jun 6. PMID: 28012169.

  58. Bagheri H, Ghasemi F, Barreto GE, Sathyapalan T, Jamialahmadi T, Sahebkar A. The effects of statins on microglial cells to protect against neurodegenerative disorders: A mechanistic review. Biofactors. 2020 May;46(3):309-325. https://doi.org/10.1002/biof.1597. Epub 2019 Dec 17. PMID: 31846136.

  59. An BJ, Lee JY, Park TS, Pyeon JR, Bae HJ, Song M et al (2006) Antioxidant activity and whitening effect of extraction conditions in curcuma longa L. Korean J Med Crop Sci 14(3):168–172

    Google Scholar 

  60. Sun XY, Zheng YP, Lin DH, Zhang H, Zhao F, Yuan CS (2009) Potential anti-cancer activities of furanodiene, a sesquiterpene from Curcuma wenyujin. Am J Chinese Med 37(03):589–596

    Article  CAS  Google Scholar 

  61. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151(4):W-65–W-94

    Article  Google Scholar 

  62. Hu P, Huang P, Chen WM (2013) Curcumin inhibits the Sortase A activity of the Streptococcus mutans UA159. Appl Biochem Biotechnol 171(2):396–402

    Article  CAS  PubMed  Google Scholar 

  63. Hu P, Huang P, Chen MW (2013) Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Arch Oral Biol 58(10):1343–1348

    Article  CAS  PubMed  Google Scholar 

  64. Kim JE, Kim HE, Hwang JK, Lee HJ, Kwon HK, Kim BI (2008) Antibacterial characteristics of Curcuma xanthorrhiza extract on Streptococcus mutans biofilm. J Microbiol 46(2):228–232

    Article  PubMed  Google Scholar 

  65. Sekiya M, Izumisawa S, Iwamoto-Kihara A, Fan Y, Shimoyama Y, Sasaki M, Nakanishi-Matsui M (2019) Proton-pumping F-ATPase plays an important role in Streptococcus mutans under acidic conditions. Arch Biochem Biophys 666:46–51

    Article  CAS  PubMed  Google Scholar 

  66. Kanth MR, Prakash AR, Sreenath G, Reddy VS, Huldah S (2016) Efficacy of specific plant products on microorganisms causing dental caries. J Clin Diagn Res 10(12):ZM01–ZM03

    PubMed  PubMed Central  Google Scholar 

  67. Klein MI, Hwang G, Santos PH, Campanella OH, Koo H (2015) Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol 5:10. https://doi.org/10.3389/fcimb.2015.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Koo H, Falsetta M, Klein M (2013) The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 92(12):1065–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu S, Qiu W, Zhang K, Zhou X, Ren B, He J et al (2017) Nicotine enhances interspecies relationship between Streptococcus mutans and Candida albicans. Biomed Res Int 2017:7953920. https://doi.org/10.1155/2017/7953920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aoki H, Shiroza T, Hayakawa M, Sato S, Kuramitsu H (1986) Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun 53(3):587–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Matsumoto M, Minami T, Sasaki H, Sobue S, Hamada S, Ooshima T (1999) Inhibitory effects of oolong tea extract on caries–inducing properties of Mutans streptococci. Caries Res 33(6):441–445

    Article  CAS  PubMed  Google Scholar 

  72. Köhler B, Birkhed D, Olsson S (1995) Acid production by human strains of Streptococcus mutans and Streptococcus sobrinus. Caries Res 29(5):402–406

    Article  PubMed  Google Scholar 

  73. Bender GR, Sutton SV, Marquis RE (1986) Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun 53(2):331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lemos JA, Abranches J, Burne RA (2005) Responses of cariogenic streptococci to environmental stresses. Curr Issues Mol Biol 7(1):95–108

    PubMed  Google Scholar 

  75. Soleimani V, Sahebkar A, Hosseinzadeh H (2018) Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother Res 32(6):985–995. https://doi.org/10.1002/ptr.6054. Epub 2018 Feb 26. PMID: 29480523

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ehteshami, A., Shirban, F., Gharibpour, F., Bagherniya, M., Sathyapalan, T., Sahebkar, A. (2021). Does Curcumin Have an Anticaries Effect? A Systematic Review of In Vitro Studies. In: Guest, P.C. (eds) Studies on Biomarkers and New Targets in Aging Research in Iran. Advances in Experimental Medicine and Biology(), vol 1291. Springer, Cham. https://doi.org/10.1007/978-3-030-56153-6_12

Download citation

Publish with us

Policies and ethics