Skip to main content

Free-Living Ameba

  • Chapter
  • First Online:
Neurological Complications of Infectious Diseases

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Three genera of free-living amebae are known human pathogens that cause highly fatal central nervous system (CNS) infections in humans. These are Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. Acanthamoeba spp. and Balamuthia mandrillaris both cause the highly fatal granulomatous amebic encephalitis (GAE). Naegleria fowleri, also commonly referred to as the brain-eating amoeba, causes primary amebic meningoencephalitis (PAM), which can infect any individual whether immunocompromised or not. Acanthamoeba spp. mostly infect immunocompromised patients, while cases of Balamuthia mandrillaris can infect any individual. Cases of PAM usually occur in children and young adults, and have a high fatality rate. A commonality between all CNS infections from FLA are their propensity to cause fulminant, highly fatal disease that often go undiagnosed or are only identified post-mortem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Visvesvara GS, Moura H, Schuster FL. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol. 2007;50(1):1–26.

    Article  CAS  PubMed  Google Scholar 

  2. De Jonckheere JF. What do we know by now about the genus Naegleria? Exp Parasitol. 2014;145(Suppl):S2–9.

    Article  PubMed  Google Scholar 

  3. Siddiqui R, Ali IKM, Cope JR, Khan NA. Biology and pathogenesis of Naegleria fowleri. Acta Trop. 2016;164:375–94.

    Article  PubMed  Google Scholar 

  4. Marciano-Cabral F, Cabral GA. The immune response to Naegleria fowleri amebae and pathogenesis of infection. FEMS Immunol Med Microbiol. 2007;51(2):243–59.

    Article  CAS  PubMed  Google Scholar 

  5. Yoder JS, Eddy BA, Visvesvara GS, Capewell L, Beach MJ. The epidemiology of primary amoebic meningoencephalitis in the USA, 1962–2008. Epidemiol Infect. 2010;138(7):968–75.

    Article  CAS  PubMed  Google Scholar 

  6. Kemble SK, Lynfield R, DeVries AS, Drehner DM, Pomputius WF 3rd, Beach MJ, et al. Fatal Naegleria fowleri infection acquired in Minnesota: possible expanded range of a deadly thermophilic organism. Clin Infect Dis. 2012;54(6):805–9.

    Article  PubMed  Google Scholar 

  7. Yoder JS, Straif-Bourgeois S, Roy SL, Moore TA, Visvesvara GS, Ratard RC, et al. Primary amebic meningoencephalitis deaths associated with sinus irrigation using contaminated tap water. Clin Infect Dis. 2012;55(9):e79–85.

    Article  PubMed  Google Scholar 

  8. Cope JR, Ratard RC, Hill VR, Sokol T, Causey JJ, Yoder JS, et al. The first association of a primary amebic meningoencephalitis death with culturable Naegleria fowleri in tap water from a US treated public drinking water system. Clin Infect Dis. 2015;60(8):e36–42.

    Article  PubMed  Google Scholar 

  9. Cope JR, Murphy J, Kahler A, Gorbett DG, Ali I, Taylor B, et al. Primary amebic meningoencephalitis associated with rafting on an artificial whitewater river: case report and environmental investigation. Clin Infect Dis. 2018;66(4):548–53.

    Article  CAS  PubMed  Google Scholar 

  10. Capewell LG, Harris AM, Yoder JS, Cope JR, Eddy BA, Roy SL, et al. Diagnosis, clinical course, and treatment of primary amoebic meningoencephalitis in the United States, 1937–2013. J Pediatric Infect Dis Soc. 2015;4(4):e68–75.

    Article  PubMed  Google Scholar 

  11. Cope JRAI, Visvesvara GS. Pathogenic and opportunistic free-living amebae. In: Carroll KCPM, Landry ML, McAdam AJ, Patel R, Richter SS, Warnock DW, editors. Manual of clinical microbiology 2. 12th ed. Washington, DC: ASM Press; 2019. p. 2486–96.

    Google Scholar 

  12. Martinez AJ, Janitschke K. Acanthamoeba, an opportunistic microorganism: a review. Infection. 1985;13(6):251–6.

    Article  CAS  PubMed  Google Scholar 

  13. Guarner J, Bartlett J, Shieh WJ, Paddock CD, Visvesvara GS, Zaki SR. Histopathologic spectrum and immunohistochemical diagnosis of amebic meningoencephalitis. Mod Pathol. 2007;20(12):1230–7.

    Article  CAS  PubMed  Google Scholar 

  14. Seidel JS, Harmatz P, Visvesvara GS, Cohen A, Edwards J, Turner J. Successful treatment of primary amebic meningoencephalitis. N Engl J Med. 1982;306(6):346–8.

    Article  CAS  PubMed  Google Scholar 

  15. Streby A, Mull BJ, Levy K, Hill VR. Comparison of real-time PCR methods for the detection of Naegleria fowleri in surface water and sediment. Parasitol Res. 2015;114(5):1739–46.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kang H, Seong GS, Sohn HJ, Kim JH, Lee SE, Park MY, et al. Effective PCR-based detection of Naegleria fowleri from cultured sample and PAM-developed mouse. Eur J Protistol. 2015;51(5):401–8.

    Article  PubMed  Google Scholar 

  17. Kao PM, Hsu BM, Hsu TK, Chiu YC, Chang CL, Ji WT, et al. Application of TaqMan qPCR for the detection and monitoring of Naegleria species in reservoirs used as a source for drinking water. Parasitol Res. 2014;113(10):3765–71.

    Article  PubMed  Google Scholar 

  18. Kao PM, Tung MC, Hsu BM, Chou MY, Yang HW, She CY, et al. Quantitative detection and identification of Naegleria spp. in various environmental water samples using real-time quantitative PCR assay. Parasitol Res. 2013;112(4):1467–74.

    Article  PubMed  Google Scholar 

  19. Wang W, Wei F, Li J, Li N, Liu Q. Isolation and identification of naegleria species from environmental water in Changchun, Northeastern China. Iran J Parasitol. 2014;9(2):254–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mull BJ, Narayanan J, Hill VR. Improved method for the detection and quantification of Naegleria fowleri in water and sediment using immunomagnetic separation and real-time PCR. J Parasitol Res. 2013;2013:608367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Qvarnstrom Y, Visvesvara GS, Sriram R, da Silva AJ. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J Clin Microbiol. 2006;44(10):3589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Jonckheere JF. Origin and evolution of the worldwide distributed pathogenic amoeboflagellate Naegleria fowleri. Infect Genet Evol. 2011;11(7):1520–8.

    Article  PubMed  Google Scholar 

  23. Zhou L, Sriram R, Visvesvara GS, Xiao L. Genetic variations in the internal transcribed spacer and mitochondrial small subunit rRNA gene of Naegleria spp. J Eukaryot Microbiol. 2003;50(Suppl):522–6.

    Article  CAS  PubMed  Google Scholar 

  24. Cope JR, Conrad DA, Cohen N, Cotilla M, DaSilva A, Jackson J, et al. Use of the novel therapeutic agent miltefosine for the treatment of primary amebic meningoencephalitis: report of 1 fatal and 1 surviving case. Clin Infect Dis. 2016;62(6):774–6.

    Article  PubMed  Google Scholar 

  25. Linam WM, Ahmed M, Cope JR, Chu C, Visvesvara GS, da Silva AJ, et al. Successful treatment of an adolescent with Naegleria fowleri primary amebic meningoencephalitis. Pediatrics. 2015;135(3):e744–8.

    Article  PubMed  Google Scholar 

  26. Vargas-Zepeda J, Gomez-Alcala AV, Vasquez-Morales JA, Licea-Amaya L, De Jonckheere JF, Lares-Villa F. Successful treatment of Naegleria fowleri meningoencephalitis by using intravenous amphotericin B, fluconazole and rifampicin. Arch Med Res. 2005;36(1):83–6.

    Article  CAS  PubMed  Google Scholar 

  27. Goswick SM, Brenner GM. Activities of azithromycin and amphotericin B against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis. Antimicrob Agents Chemother. 2003;47(2):524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Colon BL, Rice CA, Guy RK, Kyle DE. Phenotypic screens reveal posaconazole as a rapidly acting amebicidal combination partner for treatment of primary amoebic meningoencephalitis. J Infect Dis. 2019;219(7):1095–103.

    Article  CAS  PubMed  Google Scholar 

  29. Schuster FL, Yagi S, Gavali S, Michelson D, Raghavan R, Blomquist I, et al. Under the radar: balamuthia amebic encephalitis. Clin Infect Dis. 2009;48(7):879–87.

    Article  PubMed  Google Scholar 

  30. Visvesvara GS, Schuster FL, Martinez AJ. Balamuthia mandrillaris, N. G., N. Sp., agent of amebic meningoencephalitis in humans and other animals. J Eukaryot Microbiol. 1993;40(4):504–14.

    Article  CAS  PubMed  Google Scholar 

  31. Cope JR, Landa J, Nethercut H, Collier SA, Glaser C, Moser M, et al. The epidemiology and clinical features of Balamuthia mandrillaris disease in the United States, 1974–2016. Clin Infect Dis. 2019;68(11):1815–22.

    Article  PubMed  Google Scholar 

  32. Farnon EC, Kokko KE, Budge PJ, Mbaeyi C, Lutterloh EC, Qvarnstrom Y, et al. Transmission of Balamuthia mandrillaris by organ transplantation. Clin Infect Dis. 2016;63(7):878–88.

    Article  PubMed  Google Scholar 

  33. Gupte AA, Hocevar SN, Lea AS, Kulkarni RD, Schain DC, Casey MJ, et al. Transmission of Balamuthia mandrillaris through solid organ transplantation: utility of organ recipient serology to guide clinical management. Am J Transplant. 2014;14(6):1417–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bravo FG, Seas C. Balamuthia mandrillaris amoebic encephalitis: an emerging parasitic infection. Curr Infect Dis Rep. 2012;14(4):391–6.

    Article  PubMed  Google Scholar 

  35. Huang ZH, Ferrante A, Carter RF. Serum antibodies to Balamuthia mandrillaris, a free-living amoeba recently demonstrated to cause granulomatous amoebic encephalitis. J Infect Dis. 1999;179(5):1305–8.

    Article  CAS  PubMed  Google Scholar 

  36. Booton GC, Carmichael JR, Visvesvara GS, Byers TJ, Fuerst PA. Identification of Balamuthia mandrillaris by PCR assay using the mitochondrial 16S rRNA gene as a target. J Clin Microbiol. 2003;41(1):453–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kiderlen AF, Radam E, Lewin A. Detection of Balamuthia mandrillaris DNA by real-time PCR targeting the RNase P gene. BMC Microbiol. 2008;8:210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ahmad AF, Andrew PW, Kilvington S. Development of a nested PCR for environmental detection of the pathogenic free-living amoeba Balamuthia mandrillaris. J Eukaryot Microbiol. 2011;58(3):269–71.

    Article  CAS  PubMed  Google Scholar 

  39. Yagi S, Schuster FL, Visvesvara GS. Demonstration of Balamuthia and Acanthamoeba mitochondrial DNA in sectioned archival brain and other tissues by the polymerase chain reaction. Parasitol Res. 2008;102(3):491–7.

    Article  PubMed  Google Scholar 

  40. Cope JR, Roy S, Ali I. 865. Acanthamoeba Disease associated with the practice of nasal rinsing in immunocompromised patients. Open Forum Infect Dis. 2018;5(Suppl 1):S22.

    Article  PubMed Central  Google Scholar 

  41. Schuster FL, Visvesvara GS. Amebae and ciliated protozoa as causal agents of waterborne zoonotic disease. Vet Parasitol. 2004;126(1–2):91–120.

    Article  PubMed  Google Scholar 

  42. Karsenti N, Lau R, Purssell A, Chong-Kit A, Cunanan M, Gasgas J, et al. Development and validation of a real-time PCR assay for the detection of clinical acanthamoebae. BMC Res Notes. 2017;10(1):355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Riviere D, Szczebara FM, Berjeaud JM, Frere J, Hechard Y. Development of a real-time PCR assay for quantification of Acanthamoeba trophozoites and cysts. J Microbiol Methods. 2006;64(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  44. Booton GC, Visvesvara GS, Byers TJ, Kelly DJ, Fuerst PA. Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. J Clin Microbiol. 2005;43(4):1689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Disclaimer

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer R. Cope .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cope, J.R., Ali, I.K.M., Georgacopoulos, O. (2021). Free-Living Ameba. In: Hasbun, MD MPH, R., Bloch, MD MPH, K.C., Bhimraj, MD, A. (eds) Neurological Complications of Infectious Diseases. Current Clinical Neurology. Humana, Cham. https://doi.org/10.1007/978-3-030-56084-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56084-3_12

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-56083-6

  • Online ISBN: 978-3-030-56084-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics