Skip to main content

Biliary Cancer

  • Chapter
  • First Online:
Practical Medical Oncology Textbook

Part of the book series: UNIPA Springer Series ((USS))

  • 3278 Accesses

Abstract

Biliary tract carcinoma is a collective term for a heterogeneous group of rare gastrointestinal cancers including cholangiocarcinoma (intrahepatic, hilar and distal) and gallbladder cancer with different pathogenesis and prognosis. Surgery with complete resection is the only curative chance, but a minority of patients present with resectable disease, but relapse rates are high. Cisplatin/gemcitabine combination chemotherapy represents the first-line reference cytotoxic treatment for patients with advanced/metastatic unresectable disease, while there is no standard second-line therapy. Selected patients may benefit from liver transplantation combined with neoadjuvant chemoradiotherapy or may be suitable for liver-directed therapy (e.g. radioembolization or external beam radiation). Emerging data from next-generation sequencing analyses have identified several genomic alterations (e.g. FGFR fusion rearrangements, IDH-1 and -2 mutations, chromatin modifiers alterations) that are correlated with the disease and potentially druggable by targeted agents. These drugs are currently in early phases of development in BTCs with encouraging results, but further investigation should be warranted to confirm their potential clinical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis. 2004;24:115–25.

    Article  PubMed  Google Scholar 

  2. Alvaro D, Crocetti E, Ferretti S, Bragazzi MC, Capocaccia R. AISF Cholangiocarcinoma committee. Descriptive epidemiology of cholangiocarcinoma in Italy. Dig Liver Dis. 2010;42:490–5.

    Article  PubMed  Google Scholar 

  3. Bergquist A, von Seth E. Epidemiology of cholangiocarcinoma. Best Pract Res Clin Gastroenterol. 2015;29:221–32.

    Article  PubMed  Google Scholar 

  4. Cardinale V, Semeraro R, Torrice A, Gatto M, Napoli C, Bragazzi MC, et al. Intra-hepatic and extra-hepatic cholangiocarcinoma: new insight into epidemiology and risk factors. World J Gastrointest Oncol. 2010;2:407–16.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bragazzi MC, Bragazzi MC, Cardinale V, Carpino G, Venere R, Semeraro R, et al. Cholangiocarcinoma: epidemiology and risk factors. Transl Gastrointest Cancer. 2012;1:21–32.

    CAS  Google Scholar 

  6. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145:1215–29.

    Article  CAS  PubMed  Google Scholar 

  7. Burak K, Angulo P, Pasha TM, Egan K, Petz J, Lindor KD. Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am J Gastroenterol. 2004;99:523–6.

    Article  PubMed  Google Scholar 

  8. Kerr SE, Barr Fritcher EG, Campion MB, Voss JS, Kipp BR, Halling KC, et al. Biliary dysplasia in primary sclerosing cholangitis harbors cytogenetic abnormalities similar to cholangiocarcinoma. Hum Pathol. 2014;45:1797–804.

    Article  PubMed  Google Scholar 

  9. Liu R, Cox K, Guthery SL, Book L, Witt B, Chadwick B, et al. Cholangiocarcinoma and high-grade dysplasia in young patients with primary sclerosing cholangitis. Dig Dis Sci. 2014;59:2320–4.

    Article  CAS  PubMed  Google Scholar 

  10. Morris-Stiff G, Bhati C, Olliff S, Hübscher S, Gunson B, Mayer D, et al. Cholangiocarcinoma complicating primary sclerosing cholangitis: a 24-year experience. Dig Surg. 2008;25:126–32.

    Article  CAS  PubMed  Google Scholar 

  11. Watanapa P, Watanapa WB. Liver fluke-associated cholangiocarcinoma. Br J Surg. 2002;89:962–70.

    Article  CAS  PubMed  Google Scholar 

  12. Shin HR, Oh JK, Masuyer E, Curado MP, Bouvard V, Fang YY, et al. Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Sci. 2010;101:579–85.

    Article  CAS  PubMed  Google Scholar 

  13. Jang KT, Hong SM, Lee KT, Lee JG, Choi SH, Heo JS, et al. Intraductal papillary neoplasm of the bile duct associated with Clonorchis sinensis infection. Virchows Arch. 2008;453:589–98.

    Article  PubMed  Google Scholar 

  14. Kurathong S, Lerdverasirikul P, Wongpaitoon V, Pramoolsinsap C, Kanjanapitak A, Varavithya W, et al. Opisthorchis viverrini infection and cholangiocarcinoma. A prospective, case-controlled study. Gastroenterology. 1985;89:151–6.

    Article  CAS  PubMed  Google Scholar 

  15. Lipsett PA, Pitt HA, Colombani PM, Boitnott JK, Cameron JL. Choledochal cyst disease. A changing pattern of presentation. Ann Surg. 1994;220:644–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lazaridis KN, Gores GJ. Cholangiocarcinoma. Gastroenterology. 2005;128:1655–67.

    Article  PubMed  Google Scholar 

  17. Chen MF, Jan YY, Wang CS, Hwang TL, Jeng LB, Chen SC, et al. A reappraisal of cholangiocarcinoma in patient with hepatolithiasis. Cancer. 1993;71:2461–5.

    Article  CAS  PubMed  Google Scholar 

  18. Liu D, Momoi H, Li L, Ishikawa Y, Fukumoto M. Microsatellite instability in thorotrast-induced human intrahepatic cholangiocarcinoma. Int J Cancer. 2002;102:366–71.

    Article  CAS  PubMed  Google Scholar 

  19. Walker NJ, Crockett PW, Nyska A, Brix AE, Jokinen MP, Sells DM, et al. Dose-additive carcinogenicity of a defined mixture of “dioxin-like compounds”. Environ Health Perspect. 2005;113:43–8.

    Article  CAS  PubMed  Google Scholar 

  20. Matsumoto K, Onoyama T, Kawata S, Takeda Y, Harada K, Ikebuchi Y, et al. Hepatitis B and C virus infection is a risk factor for the development of cholangiocarcinoma. Intern Med. 2014;53:651–4.

    Article  PubMed  Google Scholar 

  21. Wu Y, Wang T, Ye S, Zhao R, Bai X, Wu Y, et al. Detection of hepatitis B virus DNA in paraffin-embedded intrahepatic and extrahepatic cholangiocarcinoma tissue in the northern Chinese population. Hum Pathol. 2012;43:56–61.

    Article  CAS  PubMed  Google Scholar 

  22. Palmer WC, Patel T. Are common factors involved in the pathogenesis of primary liver cancers? A meta-analysis of risk factors for intrahepatic cholangiocarcinoma. J Hepatol. 2012;57:69–76.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li JS, Han TJ, Jing N, Li L, Zhang XH, Ma FZ, et al. Obesity and the risk of cholangiocarcinoma: a meta-analysis. Tumour Biol. 2014a;35:6831–8.

    Article  CAS  PubMed  Google Scholar 

  24. Li M, Zhang Z, Li X, Ye J, Wu X, Tan Z, et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat Genet. 2014b;46:872–6.

    Article  CAS  PubMed  Google Scholar 

  25. Jing W, Jin G, Zhou X, Zhou Y, Zhang Y, Shao C, et al. Diabetes mellitus and increased risk of cholangiocarcinoma: a meta-analysis. Eur J Cancer Prev. 2012;21:24–31.

    Article  PubMed  Google Scholar 

  26. Weinbren K, Mutum SS. Pathological aspects of cholangiocarcinoma. J Pathol. 1983;139:217–38.

    Article  CAS  PubMed  Google Scholar 

  27. Yamasaki S. Intrahepatic cholangiocarcinoma: macroscopic type and staging classification. J Hepato-Biliary-Pancreat Surg. 2003;10:288–91.

    Article  Google Scholar 

  28. Chen HW, Lai EC, Pan AZ, Chen T, Liao S, Lau WY. Preoperative assessment and staging of hilar cholangiocarcinoma with 16-multidetector computed tomography cholangiography and angiography. Hepato-Gastroenterology. 2009;56:578–83.

    CAS  PubMed  Google Scholar 

  29. Manfredi R, Barbaro B, Masselli G, Vecchioli A, Marano P. Magnetic resonance imaging of cholangiocarcinoma. Semin Liver Dis. 2004;24:155–64.

    Article  PubMed  Google Scholar 

  30. Masselli G, Manfredi R, Vecchioli A, Gualdi G. MR imaging and MR cholangiopancreatography in the preoperative evaluation of hilar cholangiocarcinoma: correlation with surgical and pathologic findings. Eur Radiol. 2008;18:2213–21.

    Article  PubMed  Google Scholar 

  31. Blechacz B, Gores GJ. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology. 2008;48:308–21.

    Article  CAS  PubMed  Google Scholar 

  32. Razumilava N, Gores GJ, Lindor KD. Cancer surveillance in patients with primary sclerosing cholangitis. Hepatology. 2011;54:1842–52.

    Article  PubMed  Google Scholar 

  33. Konstadoulakis MM, Roayaie S, Gomatos IP, Labow D, Fiel MI, Miller CM, et al. Fifteen-year, single-center experience with the surgical management of intrahepatic cholangiocarcinoma: operative results and long-term outcome. Surgery. 2008;143:366–74.

    Article  PubMed  Google Scholar 

  34. Lang H, Sotiropoulos GC, Sgourakis G, Schmitz KJ, Paul A, Hilgard P, et al. Operations for intrahepatic cholangiocarcinoma: single-institution experience of 158 patients. J Am Coll Surg. 2009;208:218–28.

    Article  PubMed  Google Scholar 

  35. Nagino M, Ebata T, Yokoyama Y, Igami T, Sugawara G, Takahashi Y, et al. Evolution of surgical treatment for perihilar cholangiocarcinoma: a single-center 34-year review of 574 consecutive resections. Ann Surg. 2013;258:129–40.

    Article  PubMed  Google Scholar 

  36. Kluge R, Schmidt F, Caca K, Barthel H, Hesse S, Georgi P, et al. Positron emission tomography with [(18)F]fluoro-2-deoxy-D-glucose for diagnosis and staging of bile duct cancer. Hepatology. 2001;33:1029–35.

    Article  CAS  PubMed  Google Scholar 

  37. Navaneethan U, Njei B, Venkatesh PG, Vargo JJ, Parsi MA. Fluorescence in situ hybridization for diagnosis of cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and metaanalysis. Gastrointest Endosc. 2014;79:943–950.e3.

    Article  PubMed  Google Scholar 

  38. Trikudanathan G, Navaneethan U, Njei B, Vargo JJ, Parsi MA. Diagnostic yield of bile duct brushings for cholangiocarcinoma in primary sclerosing cholangitis: a systematic review and meta-analysis. Gastrointest Endosc. 2014;79:783–9.

    Article  PubMed  Google Scholar 

  39. Njei B, McCarty TR, Varadarajulu S, Navaneethan U. Systematic review with meta-analysis: endoscopic retrograde cholangiopancreatography-based modalities for the diagnosis of cholangiocarcinoma in primary sclerosing cholangitis. Aliment Pharmacol Ther. 2016;44:1139–51.

    Article  CAS  PubMed  Google Scholar 

  40. Kalaitzakis E, Webster GJ, Oppong KW, Kallis Y, Vlavianos P, Huggett M, et al. Diagnostic and therapeutic utility of single-operator peroral cholangioscopy for indeterminate biliary lesions and bile duct stones. Eur J Gastroenterol Hepatol. 2012;24:656–64.

    Article  PubMed  Google Scholar 

  41. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. AJCC cancer staging manual. 7th ed. New York: Springer; 2010.

    Google Scholar 

  42. Endo I, Gonen M, Yopp AC, Dalal KM, Zhou Q, Klimstra D, et al. Intrahepatic cholangiocarcinoma: rising frequency, improved survival and determinants of outcome after resection. Ann Surg. 2008;248:84–96.

    Article  PubMed  Google Scholar 

  43. Bridgewater J, Lopes A, Wasan H, Malka D, Jensen L, Okusaka T, et al. Prognostic factors for progression-free and overall survival in advanced biliary tract cancer. Ann Oncol. 2016;27:134–40.

    Article  CAS  PubMed  Google Scholar 

  44. Grenader T, Nash S, Plotkin Y, Furuse J, Mizuno N, Okusaka T, et al. Derived neutrophil lymphocyte ratio may predict benefit from cisplatin in the advanced biliary cancer: the ABC-02 and BT-22 studies. Ann Oncol. 2015;26:1910–6.

    Article  CAS  PubMed  Google Scholar 

  45. McNamara MG, Templeton AJ, Maganti M, Walter T, Horgan AM, McKeever L, et al. Neutrophil/lymphocyte ratio as a prognostic factor in biliary tract cancer. Eur J Cancer. 2014;50:1581–9.

    Article  CAS  PubMed  Google Scholar 

  46. Akamatsu N, Sugawara Y, Hashimoto D. Surgical strategy for bile duct cancer: advances and current limitations. World J Clin Oncol. 2011;2:94–107.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cho MS, Kim SH, Park SW, Lim JH, Choi GH, Park JS, et al. Surgical outcomes and predicting factors of curative resection in patients with hilar cholangiocarcinoma: 10-year single-institution experience. J Gastrointest Surg. 2012;16:1672–9.

    Article  PubMed  Google Scholar 

  48. Zaydfudim VM, Rosen CB, Nagorney DM. Hilar cholangiocarcinoma. Surg Oncol Clin N Am. 2014;23:247–63.

    Article  PubMed  Google Scholar 

  49. Shih SP, Schulick RD, Cameron JL, Lillemoe KD, Pitt HA, Choti MA, et al. Gallbladder cancer: the role of laparoscopy and radical resection. Ann Surg. 2007;245:893–901.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gerhards MF, van Gulik TM, de Wit LT, Obertop H, Gouma DJ. Evaluation of morbidity and mortality after resection for hilar cholangiocarcinoma a single center experience. Surgery. 2000;127:395–404.

    Article  CAS  PubMed  Google Scholar 

  51. Kondo S, Hirano S, Ambo Y, Tanaka E, Okushiba S, Morikawa T, et al. Forty consecutive resections of hilar cholangiocarcinoma with no postoperative mortality and no positive ductal margins: results of a prospective study. Ann Surg. 2004;240:95–101.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ebata T, Nagino M, Kamiya J, Uesaka K, Nagasaka T, Nimura Y. Hepatectomy with portal vein resection for hilar cholangiocarcinoma: audit of 52 consecutive cases. Ann Surg. 2003;238:720–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Neuhaus P, Jonas S, Settmacher U, Thelen A, Benckert C, Lopez-Hänninen E, et al. Surgical management of proximal bile duct cancer: extended right lobe resection increases resectability and radicality. Langenbeck’s Arch Surg. 2003;388:194–200.

    Article  Google Scholar 

  54. Takahashi Y, Ebata T, Yokoyama Y, Igami T, Sugawara G, Mizuno T, et al. Surgery for recurrent biliary tract cancer: a single-center experience with 74 consecutive resections. Ann Surg. 2015;262:121–9.

    Article  PubMed  Google Scholar 

  55. Rea DJ, Heimbach JK, Rosen CB, Haddock MG, Alberts SR, Kremers WK, et al. Liver transplantation with neoadjuvant chemoradiation is more effective than resection for hilar cholangiocarcinoma. Ann Surg. 2005;242:451–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bridgewater J, Galle PR, Khan SA, Llovet JM, Park JW, Patel T, et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol. 2014;60:1268–89.

    Article  PubMed  Google Scholar 

  57. Sotiropoulos GC, Kaiser GM, Lang H, Molmenti EP, Beckebaum S, Fouzas I, et al. Liver transplantation as a primary indication for intrahepatic cholangiocarcinoma: a single-center experience. Transplant Proc. 2008;40:3194–5.

    Article  CAS  PubMed  Google Scholar 

  58. Sapisochin G, Facciuto M, Rubbia-Brandt L, Marti J, Mehta N, Yao FY, et al. iCCA International Consortium. Liver transplantation for “very early” intrahepatic cholangiocarcinoma: international retrospective study supporting a prospective assessment. Hepatology. 2016;64:1178–88.

    Article  CAS  PubMed  Google Scholar 

  59. Darwish Murad S, Kim WR, Harnois DM, Douglas DD, Burton J, Kulik LM, et al. Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology. 2012;143:88–98.e3.

    Article  PubMed  Google Scholar 

  60. Horgan AM, Amir E, Walter T, Knox JJ. Adjuvant therapy in the treatment of biliary tract cancer: a systematic review and meta-analysis. J Clin Oncol. 2012;30:1934–40.

    Article  PubMed  Google Scholar 

  61. Cheng Q, Luo X, Zhang B, Jiang X, Yi B, Wu M. Predictive factors for prognosis of hilar cholangiocarcinoma: post resection radiotherapy improves survival. Eur J Surg Oncol. 2007;33:202–7.

    Article  CAS  PubMed  Google Scholar 

  62. Todoroki T, Ohara K, Kawamoto T, Koike N, Yoshida S, Kashiwagi H, et al. Benefits of adjuvant radiotherapy after radical resection of locally advanced main hepatic duct carcinoma. Int J Radiat Oncol Biol Phys. 2000;46:581–7.

    Article  CAS  PubMed  Google Scholar 

  63. Ben-Josef E, Guthrie KA, El-Khoueury AB, Corless CL, Zalupski MM, Lowy AM, et al. SWOG S0809: a phase II intergroup trial of adjuvant capecitabine and gemcitabine followed by radiotherapy and concurrent capecitabine in extrahepatic cholangiocarcinoma and gallbladder carcinoma. J Clin Oncol. 2015;33:2617–22.

    Article  CAS  PubMed  Google Scholar 

  64. Kim S, Kim SW, Bang YJ, Heo DS, Ha SW. Role of post operative radiotherapy in the management of extrahepatic bile duct cancer. Int J Radiat Oncol Biol Phys. 2002;54:414–9.

    Article  PubMed  Google Scholar 

  65. Lim KH, Oh DY, Chie EK, Jang JY, Im SA, Kim TY, et al. Adjuvant concurrent chemoradiation therapy (CCRT) alone versus CCRT followed by adjuvant chemotherapy: which is better in patients with radically resected extrahepatic biliary tract cancer? A non-randomized single center study. BMC Cancer. 2009;9:345.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhu GQ, Shi KQ, You J, Zou H, Wang LR, Braddock M, et al. Systematic review with network meta-analysis: adjuvant therapy for resected biliary tract cancer. Aliment Pharmacol Ther. 2014;40:759.

    Article  CAS  PubMed  Google Scholar 

  67. Kim YI, Park JW, Kim BH, Woo SM, Kim TH, Koh YW, et al. Outcomes of concurrent chemoradiotherapy versus chemotherapy alone for advanced-stage unresectable intrahepatic cholangiocarcinoma. Radiat Oncol. 2013;8:292.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Eckel F, Schmid RM. Chemotherapy in advanced biliary tract carcinoma: a pooled analysis of clinical trials. Br J Cancer. 2007;96:896–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tsavaris N, Kosmas C, Gouveris P, Gennatas K, Polyzos A, Mouratidou D, et al. Weekly gemcitabine for the treatment of biliary tract and gallbladder cancer. Investig New Drugs. 2004;22:193–8.

    Article  CAS  Google Scholar 

  70. Raderer M, Hejna MH, Valencak JB, Kornek GV, Weinlander GS, Bareck E, et al. Two consecutive phase II studies of 5-fluorouracil/leucovorin/mitomycin C and of gemcitabine in patients with advanced biliary cancer. Oncology. 1999;56:177–80.

    Article  CAS  PubMed  Google Scholar 

  71. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362:1273–81.

    Article  CAS  PubMed  Google Scholar 

  72. Okusaka T, Nakachi K, Fukutomi A, Mizuno N, Ohkawa S, Funakoshi A, et al. Gemcitabine alone or in combination with cisplatin in patients with biliary tract cancer: a comparative multicentre study in Japan. Br J Cancer. 2010;103:469–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Valle JW, Furuse J, Jitlal M, Beare S, Mizuno N, Wasan H, et al. Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Ann Oncol. 2014;25:391–8.

    Article  CAS  PubMed  Google Scholar 

  74. Fiteni F, Nguyen T, Vernerey D, Paillard MJ, Kim S, Demarchi M, et al. Cisplatin/gemcitabine or oxaliplatin/gemcitabine in the treatment of advanced biliary tract cancer: a systematic review. Cancer Med. 2014;3:1502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Iyer RV, Gibbs J, Kuvshinoff B, Fakih M, Kepner J, Soehnlein N, et al. A phase II study of gemcitabine and capecitabine in advanced cholangiocarcinoma and carcinoma of the gallbladder: a single-institution prospective study. Ann Surg Oncol. 2007;14:3202–9.

    Article  PubMed  Google Scholar 

  76. Cereda S, Passoni P, Reni M, Viganò MG, Aldrighetti L, Nicoletti R, et al. The cisplatin, epirubicin, 5-fluorouracil, gemcitabine (PEFG) regimen in advanced biliary tract adenocarcinoma. Cancer. 2010;116:2208–14.

    CAS  PubMed  Google Scholar 

  77. Yamashita Y, Taketomi A, Itoh S, Harimoto N, Tsujita E, Sugimachi K, et al. Phase II trial of gemcitabine combined with 5-fluorouracil and cisplatin (GFP) chemotherapy in patients with advanced biliary tree cancers. Jpn J Clin Oncol. 2010;40:24–8.

    Article  PubMed  Google Scholar 

  78. Fornaro L, Cereda S, Aprile G, Di Girolamo S, Santini D, Silvestris N, et al. Multivariate prognostic factors analysis for second-line chemotherapy in advanced biliary tract cancer. Br J Cancer. 2014;110:2165–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hyder O, Marques H, Pulitano C, Marsh JW, Alexandrescu S, Bauer TW, et al. A nomogram to predict long-term survival after resection for intrahepatic cholangiocarcinoma: an Eastern and Western experience. JAMA Surg. 2014;149:432–8.

    Article  PubMed  Google Scholar 

  80. Hyder O, Marsh JW, Salem R, Petre EN, Kalva S, Liapi E, et al. Intra-arterial therapy for advanced intrahepatic cholangiocarcinoma: a multi-institutional analysis. Ann Surg Oncol. 2013;20:3779–86.

    Article  PubMed  Google Scholar 

  81. Vogl TJ, Naguibi NN, Nour-Eldin NE, Bechstein WO, Zeuzem S, Trojan J, et al. Transarterial chemoembolization in the treatment of patients with unresectable cholangiocarcinoma: results and prognostic factors governing treatment success. Int J Cancer. 2012;131:733–40.

    Article  CAS  PubMed  Google Scholar 

  82. Hayashi T, Ishiwatari H, Yoshida M, Sato T, Miyanishi K, Sato Y, et al. A phase I trial of arterial infusion chemotherapy with gemcitabine and 5-fluorouracil for unresectable biliary tract cancer. Int J Clin Oncol. 2012;17:491–7.

    Article  CAS  PubMed  Google Scholar 

  83. Sinn M, Nicolau A, Gebauer B, Podrabsky P, Seehofer D, Ricke J, et al. Hepatic arterial infusion with oxaliplatin and 5-FU/folinic acid for advanced biliary tract cancer: a phase II study. Dig Dis Sci. 2013;58:2399–405.

    Article  CAS  PubMed  Google Scholar 

  84. Leggett CL, Gorospe EC, Murad MH, Montori VM, Baron TH, Wang KK. Photodynamic therapy for unresectable cholangiocarcinoma: a comparative effectiveness systematic review and meta-analyses. Photodiagnosis Photodyn Ther. 2012;9:189–95.

    Article  PubMed  Google Scholar 

  85. Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47:1003–10.

    Article  CAS  PubMed  Google Scholar 

  86. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12:5268–72.

    Article  CAS  PubMed  Google Scholar 

  87. Gwak GY, Yoon JH, Shin CM, Ahn YJ, Chung JK, Kim YA, et al. Detection of response-predicting mutations in the kinase domain of the epidermal growth factor receptor gene in cholangiocarcinomas. J Cancer Res Clin Oncol. 2005;131:649–52.

    Article  CAS  PubMed  Google Scholar 

  88. Leone F, Cavalloni G, Pignochino Y, Sarotto I, Ferraris R, Piacibello W, et al. Somatic mutations of epidermal growth factor receptor in bile duct and gallbladder carcinoma. Clin Cancer Res. 2006;12:1680–5.

    Article  CAS  PubMed  Google Scholar 

  89. Nakazawa K, Dobashi Y, Suzuki S, Fujii H, Takeda Y, Ooi A. Amplification and overexpression of c-erbB-2, epidermal growth factor receptor, and c-met in biliary tract cancers. J Pathol. 2005;206:356–65.

    Article  CAS  PubMed  Google Scholar 

  90. Hezel AF, Noel MS, Allen JN, Abrams TA, Yurgelun M, Faris JE, et al. Phase II study of gemcitabine, oxaliplatin in combination with panitumumab in KRAS wild-type unresectable or metastatic biliary tract and gallbladder cancer. Br J Cancer. 2014;111:430–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Philip PA, Mahoney MR, Allmer C, Thomas J, Pitot HC, Kim G, Donehower RC, et al. Phase II study of erlotinib in patients with advanced biliary cancer. J Clin Oncol. 2006;24:3069–74.

    Article  CAS  PubMed  Google Scholar 

  92. Lee J, Park SH, Chang HM, Kim JS, Choi HJ, Lee MA, et al. Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary-tract cancer: a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2012;13:181–8.

    Article  CAS  PubMed  Google Scholar 

  93. Malka D, Cervera P, Foulon S, Trarbach T, de la Fouchardière C, Boucher E, Fartoux L, Faivre S, et al. BINGO investigators. Gemcitabine and oxaliplatin with or without cetuximab in advanced biliary-tract cancer (BINGO): a randomised, open-label, non-comparative phase 2 trial. Lancet Oncol. 2014;15:819–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Galdy S, Lamarca A, McNamara MG, Hubner RA, Cella CA, Fazio N, et al. HER2/HER3 pathway in biliary tract malignancies; systematic review and meta-analysis: a potential therapeutic target? Cancer Metastasis Rev. 2016;36:141–57.

    Article  PubMed Central  Google Scholar 

  95. Kaseb A. A phase II study trastuzumab (NSC 688097) in Her2/Neu positive cancer of the gallbladder or biliary tract (NCI 7756). In: Clinicaltrials.gov. National Cancer Institute (NCI); 2014.

  96. Peck J, Wei L, Zalupski M, O’Neil B, Villalona Calero M, Bekaii-Saab T. HER2/neu may not be an interesting target in biliary cancers: results of an early phase II study with lapatinib. Oncology. 2012;82:175–9.

    Article  CAS  PubMed  Google Scholar 

  97. Ross JS, Wang K, Gay L, Al-Rohil R, Rand JV, Jones DM, et al. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing. Oncologist. 2014;19:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen TC, Jan YY, Yeh TS. K-ras mutation is strongly associated with perineural invasion and represents an independent prognostic factor of intrahepatic cholangiocarcinoma after hepatectomy. Ann Surg Oncol. 2012;19(Suppl 3):S675–81.

    Article  PubMed  Google Scholar 

  99. Tannapfel A, Sommerer F, Benicke M, Katalinic A, Uhlmann D, Witzigmann H, et al. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut. 2003;52:706–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bekaii-Saab T, Phelps MA, Li X, Saji M, Goff L, Kauh JS, O’Neil BH, et al. Multi-institutional phase II study of selumetinib in patients with metastatic biliary cancers. J Clin Oncol. 2011;29:2357–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. El-Khoueiry AB, Rankin CJ, Ben-Josef E, Lenz HJ, Gold PJ, Hamilton RD, et al. SWOG 0514: a phase II study of sorafenib in patients with unresectable or metastatic gallbladder carcinoma and cholangiocarcinoma. Investig New Drugs. 2012;30:1646–51.

    Article  CAS  Google Scholar 

  102. Moehler M, Maderer A, Schimanski C, Kanzler S, Denzer U, Kolligs FT, et al. Working Group of Internal Oncology. Gemcitabine plus sorafenib versus gemcitabine alone in advanced biliary tract cancer: a double-blind placebo-controlled multicentre phase II AIO study with biomarker and serum programme. Eur J Cancer. 2014;50:3125–35.

    Article  CAS  PubMed  Google Scholar 

  103. Herberger B, Puhalla H, Lehnert M, Wrba F, Novak S, Brandstetter A, et al. Activated mammalian target of rapamycin is an adverse prognostic factor in patients with biliary tract adenocarcinoma. Clin Cancer Res. 2007;13:4795–9.

    Article  CAS  PubMed  Google Scholar 

  104. Riener MO, Bawohl M, Clavien PA, Jochum W. Rare PIK3CA hotspot mutations in carcinomas of the biliary tract. Genes Chromosomes Cancer. 2008;47:363–7.

    Article  CAS  PubMed  Google Scholar 

  105. Deshpande V, Nduaguba A, Zimmerman SM, Kehoe SM, Macconaill LE, Lauwers GY, et al. Mutational profiling reveals PIK3CA mutations in gallbladder carcinoma. BMC Cancer. 2011;11:60.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Simbolo M, Fassan M, Ruzzenente A, Mafficini A, Wood LD, Corbo V, et al. Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups. Oncotarget. 2014;5:2839–52.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yeung YH, Chionh FJM, Price TJ, Scott AM, Tran H, Fang G, et al. Phase II study of everolimus monotherapy as first-line treatment in advanced biliary tract cancer: RADichol. J Clin Oncol. 2014;32(suppl):5s. abstr 4101.

    Google Scholar 

  108. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.

    Article  CAS  PubMed  Google Scholar 

  109. Borad MJ, Champion MD, Egan JB, Liang WS, Fonseca R, Bryce AH, et al. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet. 2014;10:e1004135.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Arai Y, Totoki Y, Hosoda F, Shirota T, Hama N, Nakamura H, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology. 2014;59:1427–34.

    Article  CAS  PubMed  Google Scholar 

  111. Graham RP, Barr Fritcher EG, Pestova E, Schulz J, Sitailo LA, Vasmatzis G, et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum Pathol. 2014;45:1630–8.

    Article  CAS  PubMed  Google Scholar 

  112. Reitman ZJ, Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst. 2010;102:932–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Saha SK, Parachoniak CA, Ghanta KS, Fitamant J, Ross KN, Najem MS, et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature. 2014;513:110–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jiao Y, Pawlik TM, Anders RA, Selaru FM, Streppel MM, Lucas DJ, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet. 2013;45:1470–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kipp BR, Voss JS, Kerr SE, Barr Fritcher EG, Graham RP, Zhang L, et al. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum Pathol. 2012;43:1552–8.

    Article  CAS  PubMed  Google Scholar 

  116. Wang P, Dong Q, Zhang C, Kuan PF, Liu Y, Jeck WR, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene. 2013;32:3091–100.

    Article  CAS  PubMed  Google Scholar 

  117. Pollyea DA, De Botton S, Fathi AT, et al. Clinical safety and activity in a phase I trial of AG-120, a first in class, selective, potent inhibitor of theIDH1-mutant protein, in patients with IDH1 mutant positive advanced hematologic malignancies. In: EORTC-NCI-AACR symposium. Barcelona: European Cancer Organisation; 2014.

    Google Scholar 

  118. Stein EM, Altman JK, Collins R, et al. AG-221, an oral, selective, first-in-class, potent inhibitor of the IDH2 mutant metabolic enzyme, induces durable remissions in a phase I study in patients with IDH2 mutation positive advanced hematologic malignancies. San Francisco: American Society of Hematology (ASH); 2014.

    Book  Google Scholar 

  119. Wu RC, Wang TL, Shih Ie M. The emerging roles of ARID1A in tumor suppression. Cancer Biol Ther. 2014;15:655–64.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Churi CR, Shroff R, Wang Y, Rashid A, Kang HC, Weatherly J, et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS One. 2014;23:e115383.

    Article  Google Scholar 

  121. Chong DQ, Ax Z. The landscape of targeted therapies for cholangiocarcinoma: current status and emerging targets. Oncotarget. 2016;7:46750–67.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Shen DY, Zhang W, Zeng X, Liu CQ. Inhibition of Wnt/beta-catenin signaling downregulates P-glycoprotein and reverses multi-drug resistance of cholangiocarcinoma. Cancer Sci. 2013;104:1303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang W, Zhong W, Yuan J, Yan C, Hu S, Tong Y, et al. Involvement of Wnt/beta-catenin signaling in the mesenchymal stem cells promote metastatic growth and chemoresistance of cholangiocarcinoma. Oncotarget. 2015;6:42276–89.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Settakorn J, Kaewpila N, Burns GF, Leong AS. FAT, E-cadherin, beta catenin, HER 2/neu, Ki67 immuno-expression, and histological grade in intrahepatic cholangiocarcinoma. J Clin Pathol. 2005;58:1249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rosenbluh J, Wang X, Hahn WC. Genomic insights into WNT/beta-catenin signaling. Trends Pharmacol Sci. 2014;35:103–9.

    Article  CAS  PubMed  Google Scholar 

  126. Fingas CD, Bronk SF, Werneburg NW, Mott JL, Guicciardi ME, Cazanave SC, et al. Myofibroblast-derived PDGF-BB promotes Hedgehog survival signaling in cholangiocarcinoma cells. Hepatology. 2011;54:2076–88.

    Article  CAS  PubMed  Google Scholar 

  127. Fingas CD, Mertens JC, Razumilava N, Sydor S, Bronk SF, Christensen JD, et al. Polo-like kinase 2 is a mediator of hedgehog survival signaling in cholangiocarcinoma. Hepatology. 2013;58:1362–74.

    Article  CAS  PubMed  Google Scholar 

  128. Mertens JC, Fingas CD, Christensen JD, Smoot RL, Bronk SF, et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res. 2013;73:897–907.

    Article  CAS  PubMed  Google Scholar 

  129. Xie F, Xu X, Xu A, Liu C, Liang F, Xue M, et al. Aberrant activation of sonic hedgehog signaling in chronic cholecystitis and gallbladder carcinoma. Hum Pathol. 2014;45:513–21.

    Article  CAS  PubMed  Google Scholar 

  130. Matsushita S, Onishi H, Nakano K, Nagamatsu I, Imaizumi A, Hattori M, et al. Hedgehog signaling pathway is a potential therapeutic target for gallbladder cancer. Cancer Sci. 2014;105:272–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Riedlinger D, Bahra M, Boas-Knoop S, Lippert S, Bradtmoller M, Guse K, et al. Hedgehog pathway as a potential treatment target in human cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2014;21:607–15.

    Article  PubMed  Google Scholar 

  132. Li J, Wu T, Lu J, Cao Y, Song N, Yang T, et al. Immunohistochemical evidence of the prognostic value of hedgehog pathway components in primary gallbladder carcinoma. Surg Today. 2012;42:770–5.

    Article  CAS  PubMed  Google Scholar 

  133. Tang L, Tan YX, Jiang BG, Pan YF, Li SX, Yang GZ, et al. The prognostic significance and therapeutic potential of hedgehog signaling in intrahepatic cholangiocellular carcinoma. Clin Cancer Res. 2013;19:2014–24.

    Article  CAS  PubMed  Google Scholar 

  134. Miyamoto M, Ojima H, Iwasaki M, Shimizu H, Kokubu A, Hiraoka N, et al. Prognostic significance of overexpression of c-met onco protein in cholangiocarcinoma. Br J Cancer. 2011;105:131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Terada T, Nakanuma Y, Sirica AE. Immunohistochemical demonstration of MET overexpression in human intrahepatic cholangiocarcinoma and in hepatolithiasis. Hum Pathol. 1998;29:175–80.

    Article  CAS  PubMed  Google Scholar 

  136. Li H, Shimura H, Aoki Y, Date K, Matsumoto K, Nakamura T, et al. Hepatocyte growth factor stimulates the invasion of gallbladder carcinoma cell lines in vitro. Clin Exp Metastasis. 1998;16:74–82.

    Article  CAS  PubMed  Google Scholar 

  137. Yang L, Guo T, Jiang S, Yang Z. Expression of ezrin, HGF and c-met and its clinicopathological significance in the benign and malignant lesions of the gallbladder. Hepato-Gastroenterology. 2012;59:1769–75.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Tonini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tonini, G., Iuliani, M., Ribelli, G., Simonetti, S., Pantano, F. (2021). Biliary Cancer. In: Russo, A., Peeters, M., Incorvaia, L., Rolfo, C. (eds) Practical Medical Oncology Textbook. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-56051-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56051-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56050-8

  • Online ISBN: 978-3-030-56051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics