Skip to main content

Cancer Cachexia

  • Chapter
  • First Online:
Practical Medical Oncology Textbook

Part of the book series: UNIPA Springer Series ((USS))

  • 3311 Accesses

Abstract

Cachexia is one of the most devastating conditions associated to cancer. Severe wasting produces both a high symptomatic burden and secondary psychological distress, and it is estimated to directly cause 20% of cancer deaths. Its pathophysiology is characterized by tumor-host interactions that, mediated mainly by tumor- and host-derived molecules, lead to profound metabolic changes that predominantly affect the central nervous system, the gastrointestinal tract, the adipose and the skeletal muscle tissue, and the immune system. Due to its clinical variability, consensus definitions were established, which defined cancer cachexia as the consequence of a variable combination of decreased oral intake and impaired metabolism that is refractory to conventional nutritional support. The establishment of clinical stages in which lean body mass evaluations were progressively incorporated to improve tissue wasting detection has increasingly stressed the early detection of the syndrome. Although cancer cachexia treatment has been an active research field in the last decades, no single drug has clinically demonstrated a robust benefit, and progestogens remain the only drugs specifically approved for this condition. Ongoing research is being conducted to elucidate whether intervening earlier in the natural history of the syndrome or combining drugs, nutritional interventions, and/or physical activity programs is able to improve outcomes. Additionally, the bottleneck-shaped pathophysiology of cancer cachexia, which begins within tumor cells, raises hope that better oncologic treatments will decisively contribute to decrease the dramatic impact of this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christensen HM, Kistorp C, Schou M, Keller N, Zerahn B, Frystyk J, et al. Prevalence of cachexia in chronic heart failure and characteristics of body composition and metabolic status. Endocrine. 2013;43(3):626–34.

    Article  CAS  PubMed  Google Scholar 

  2. Dewys WD, Begg C, Lavin PT, Band PR, Bennett JM, Bertino JR, et al. Prognostic effect of weight loss prior tochemotherapy in cancer patients. Am J Med. 1980;69(4):491–7.

    Article  CAS  PubMed  Google Scholar 

  3. Warren S. The immediate causes of death in cancer.pdf. Am J Med Sci. 1932;184:610–3.

    Article  Google Scholar 

  4. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21296615.

    Article  PubMed  Google Scholar 

  5. Laviano A, Meguid MM. Nutritional issues in cancer management. Nutrition. 1996;12:358–71.

    Article  CAS  PubMed  Google Scholar 

  6. Martin L, Senesse P, Gioulbasanis I, Antoun S, Bozzetti F, Deans C, et al. Diagnostic criteria for the classification of cancer-associated weight loss. J Clin Oncol. 2015;33(1):90–9. Available from: http://ascopubs.org/doi/10.1200/JCO.2014.56.1894.

    Article  PubMed  Google Scholar 

  7. Oberholzer R, Hopkinson JB, Baumann K, Omlin A, Kaasa S, Fearon KC, et al. Psychosocial effects of cancer cachexia: a systematic literature search and qualitative analysis. J Pain Symptom Manag. 2013;46(1):77–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23159682.

    Article  Google Scholar 

  8. Fearon KCH, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012;16(2):153–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22795476.

    Article  CAS  PubMed  Google Scholar 

  9. BHL T, KCH F. Cytokine gene polymorphisms and susceptibility to cachexia. Curr Opin Support Palliat Care. 2010;4(4):243–8. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=01263393-201012000-00005.

    Article  Google Scholar 

  10. Tan BHL, Fladvad T, Braun TP, Vigano A, Strasser F, Deans DAC, et al. P-selectin genotype is associated with the development of cancer cachexia. EMBO Mol Med. 2012;4(6):462–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22473907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bruera E, Higginson I, von Charles F, Gunten TM. Textbook of palliative medicine and supportive care. 2nd ed. Oxford: Oxfords University Press; 2015. p. 529–38.

    Book  Google Scholar 

  12. Macciò A, Madeddu C, Mantovani G. Current pharmacotherapy options for cancer anorexia and cachexia. Expert Opin Pharmacother. 2012;13(17):2453–72. Available from: http://www.tandfonline.com/doi/full/10.1517/14656566.2012.734297.

    Article  PubMed  Google Scholar 

  13. Ruiz Garcia V, López-Briz E, Carbonell Sanchis R, Gonzalvez Perales JL, Bort-Marti S. Megestrol acetate for treatment of anorexia-cachexia syndrome. In: Ruiz Garcia V, editor. Cochrane database of systematic reviews. Chichester: Wiley; 2013. p. CD004310. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23543530.

    Google Scholar 

  14. Yennurajalingam S, Willey JS, Palmer JL, Allo J, Del FE, Cohen EN, et al. The role of thalidomide and placebo for the treatment of cancer-related anorexia-cachexia symptoms: results of a double-blind placebo-controlled randomized study. J Palliat Med. 2012;15(10):1059–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22880820.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mendes MCS, Pimentel GD, Costa FO, Carvalheira JBC. Molecular and neuroendocrine mechanisms of cancer cachexia. J Endocrinol. 2015;226(3):R29–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26112046.

    Article  CAS  PubMed  Google Scholar 

  16. Jatoi A, Loprinzi CL, Sloan JA, Klee GG, Windschitl HE. Neuropeptide Y, leptin, and cholecystokinin 8 in patients with advanced cancer and anorexia: a north central cancer treatment group exploratory investigation. Cancer. 2001;92(3):629–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11505408.

    Article  CAS  PubMed  Google Scholar 

  17. Molfino A, Formiconi A, Rossi Fanelli F, Muscaritoli M. Ghrelin: from discovery to cancer cachexia therapy. Curr Opin Clin Nutr Metab Care. 2014;17(5):471–6. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00075197-201409000-00017.

    Article  CAS  PubMed  Google Scholar 

  18. Garcia JM, Garcia-Touza M, Hijazi RA, Taffet G, Epner D, Mann D, et al. Active ghrelin levels and active to total ghrelin ratio in cancer-induced cachexia. J Clin Endocrinol Metab. 2005;90(5):2920–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15713718.

    Article  CAS  PubMed  Google Scholar 

  19. Staal-van den Brekel AJ, Schols AM, ten Velde GP, Buurman WA, Wouters EF. Analysis of the energy balance in lung cancer patients. Cancer Res. 1994;54(24):6430–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7987838.

    CAS  PubMed  Google Scholar 

  20. Bosaeus I, Daneryd P, Svanberg E, Lundholm K. Dietary intake and resting energy expenditure in relation to weight loss in unselected cancer patients. Int J Cancer. 2001;93(3):380–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11433403.

    Article  CAS  PubMed  Google Scholar 

  21. Evans WK, Makuch R, Clamon GH, Feld R, Weiner RS, Moran E, et al. Limited impact of total parenteral nutrition on nutritional status during treatment for small cell lung cancer. Cancer Res. 1985;45(7):3347–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2988769.

    CAS  PubMed  Google Scholar 

  22. Arends J, Bachmann P, Baracos V, Barthelemy N, Bertz H, Bozzetti F, et al. ESPEN guidelines on nutrition in cancer patients. Clin Nutr. 2017;36(1):11–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27637832.

    Article  PubMed  Google Scholar 

  23. Purcell SA, Elliott SA, Baracos VE, Chu QSC, Prado CM. Key determinants of energy expenditure in cancer and implications for clinical practice. Eur J Clin Nutr. 2016;70(11):1230–8. Available from: http://www.nature.com/doifinder/10.1038/ejcn.2016.96.

    Article  CAS  PubMed  Google Scholar 

  24. DeJong CHC, Busquets S, Moses AGW, Schrauwen P, Ross JA, Argiles JM, et al. Systemic inflammation correlates with increased expression of skeletal muscle ubiquitin but not uncoupling proteins in cancer cachexia. Oncol Rep. 2005;14(1):257–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15944798.

    CAS  PubMed  Google Scholar 

  25. Collins P, Bing C, McCulloch P, Williams G. Muscle UCP-3 mRNA levels are elevated in weight loss associated with gastrointestinal adenocarcinoma in humans. Br J Cancer. 2002;86(3):372–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11875702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, et al. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 2014;20(3):433–47. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1550413114002769.

    Article  CAS  PubMed  Google Scholar 

  27. Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014;14(11):754–62. Available from: http://www.nature.com/doifinder/10.1038/nrc3829.

    Article  PubMed  Google Scholar 

  28. Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 2014;513(7516):100–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25043053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Staal-van den Brekel AJ, Dentener MA, Schols AM, Buurman WA, Wouters EF. Increased resting energy expenditure and weight loss are related to a systemic inflammatory response in lung cancer patients. J Clin Oncol. 1995;13(10):2600–5. Available from: http://ascopubs.org/doi/10.1200/JCO.1995.13.10.2600.

    Article  CAS  PubMed  Google Scholar 

  30. Rydén M, Arner P. Fat loss in cachexia–is there a role for adipocyte lipolysis? Clin Nutr. 2007;26:1):1–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0261561406001725.

    Article  Google Scholar 

  31. Das SK, Hoefler G. The role of triglyceride lipases in cancer associated cachexia. Trends Mol Med. 2013;19(5):292–301. Available from: http://linkinghub.elsevier.com/retrieve/pii/S147149141300035X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Das SK, Eder S, Schauer S, Diwoky C, Temmel H, Guertl B, et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science. 2011;333(6039):233–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21680814.

    Article  CAS  PubMed  Google Scholar 

  33. Hyltander A, Daneryd P, Sandström R, Körner U, Lundholm K. Beta-adrenoceptor activity and resting energy metabolism in weight losing cancer patients. Eur J Cancer. 2000;36(3):330–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10708933.

    Article  CAS  PubMed  Google Scholar 

  34. Tisdale MJ. Are tumoral factors responsible for host tissue wasting in cancer cachexia? Future Oncol. 2010;6(4):503–13. Available from: http://www.futuremedicine.com/doi/10.2217/fon.10.20.

    Article  CAS  PubMed  Google Scholar 

  35. Strasser F, Anker SD, Fainsinger RL, Baracos VE, Md J, Loprinzi C, et al. Defi nition and classifi cation of cancer cachexia: an international consensus. Lancet Oncol. 2011;12:489–95. Available from: www.thelancet.com/.

    Article  PubMed  Google Scholar 

  36. Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov. 2014;14(1):58–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25549588.

    Article  Google Scholar 

  37. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11679633.

    Article  CAS  PubMed  Google Scholar 

  38. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA. 2001;98(25):14440–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11717410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aversa Z, Bonetto A, Penna F, Costelli P, Di Rienzo G, Lacitignola A, et al. Changes in myostatin signaling in non-weight-losing cancer patients. Ann Surg Oncol. 2012;19(4):1350–6. Available from: http://www.springerlink.com/index/10.1245/s10434-011-1720-5.

    Article  PubMed  Google Scholar 

  40. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21376230.

    Article  CAS  PubMed  Google Scholar 

  41. Maltoni M, Fabbri L, Nanni O, Scarpi E, Pezzi L, Flamini E, et al. Serum levels of tumour necrosis factor alpha and other cytokines do not correlate with weight loss and anorexia in cancer patients. Support Care Cancer. 1997;5(2):130–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9069613.

    Article  CAS  PubMed  Google Scholar 

  42. Jatoi A, Ritter HL, Dueck A, Nguyen PL, Nikcevich DA, Luyun RF, et al. A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer. 2010;68(2):234–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19665818.

    Article  PubMed  Google Scholar 

  43. Suh S-Y, Choi YS, Yeom CH, Kwak SM, Yoon HM, Kim DG, et al. Interleukin-6 but not tumour necrosis factor-alpha predicts survival in patients with advanced cancer. Support Care Cancer. 2013;21(11):3071–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23828393.

    Article  PubMed  Google Scholar 

  44. Narsale AA, Carson JA. Role of interleukin-6 in cachexia: therapeutic implications. Curr Opin Support Palliat Care. 2014;8(4):321–7. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=01263393-201412000-00003.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Prado CMM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–35. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1470204508701530.

    Article  PubMed  Google Scholar 

  46. Gonzalez MC, Pastore CA, Orlandi SP, Heymsfield SB. Obesity paradox in cancer: new insights provided by body composition. Am J Clin Nutr. 2014;99(5):999–1005. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24572565.

    Article  CAS  PubMed  Google Scholar 

  47. Schweitzer L, Geisler C, Pourhassan M, Braun W, Gluer C-C, Bosy-Westphal A, et al. What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults? Am J Clin Nutr. 2015;102(1):58–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26016860.

    Article  CAS  PubMed  Google Scholar 

  48. Tsai S. Importance of lean body mass in the oncologic patient. Nutr Clin Pract. 2012;27(5):593–8. Available from: http://journals.sagepub.com/doi/10.1177/0884533612457949.

    Article  PubMed  Google Scholar 

  49. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31(12):1539–47. Available from: http://ascopubs.org/doi/10.1200/JCO.2012.45.2722.

    Article  PubMed  Google Scholar 

  50. Prado CMM, Baracos VE, McCargar LJ, Mourtzakis M, Mulder KE, Reiman T, et al. Body composition as an independent determinant of 5-fluorouracil-based chemotherapy toxicity. Clin Cancer Res. 2007;13(11):3264–8. Available from: http://clincancerres.aacrjournals.org/cgi/doi/10.1158/1078-0432.CCR-06-3067.

    Article  CAS  PubMed  Google Scholar 

  51. Kilgour RD, Vigano A, Trutschnigg B, Lucar E, Borod M, Morais JA. Handgrip strength predicts survival and is associated with markers of clinical and functional outcomes in advanced cancer patients. Support Care Cancer. 2013;21(12):3261–70. Available from: http://link.springer.com/10.1007/s00520-013-1894-4.

    Article  CAS  PubMed  Google Scholar 

  52. Kasymjanova G, Correa JA, Kreisman H, Dajczman E, Pepe C, Dobson S, et al. Prognostic value of the six-minute walk in advanced non-small cell lung cancer. J Thorac Oncol. 2009;4(5):602–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19276833.

    Article  PubMed  Google Scholar 

  53. Madeddu C, Mantovani G, Gramignano G, Macciò A. Advances in pharmacologic strategies for cancer cachexia. Expert Opin Pharmacother. 2015;16(14):2163–77. Available from: http://www.tandfonline.com/doi/full/10.1517/14656566.2015.1079621.

    Article  PubMed  Google Scholar 

  54. McMillan DC. The systemic inflammation-based glasgow prognostic score: a decade of experience in patients with cancer. Cancer Treat Rev. 2013;39(5):534–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22995477.

    Article  PubMed  Google Scholar 

  55. Blum D, Stene GB, Solheim TS, Fayers P, Hjermstad MJ, Baracos VE, et al. Validation of the consensus-definition for cancer cachexia and evaluation of a classification model–a study based on data from an international multicentre project (EPCRC-CSA). Ann Oncol. 2014;25(8):1635–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24562443.

    Article  CAS  PubMed  Google Scholar 

  56. Vigano AAL, Morais JA, Ciutto L, Rosenthall L, di Tomasso J, Khan S, et al. Use of routinely available clinical, nutritional, and functional criteria to classify cachexia in advanced cancer patients. Clin Nutr. 2017;36(5):1378–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27793524.

    Article  PubMed  Google Scholar 

  57. Argilés JM, Betancourt A, Guàrdia-Olmos J, Peró-Cebollero M, López-Soriano FJ, Madeddu C, et al. Validation of the CAchexia SCOre (CASCO). Staging cancer patients: the use of miniCASCO as a simplified tool. Front Physiol. 2017;8:92. Available from: http://journal.frontiersin.org/article/10.3389/fphys.2017.00092/full.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lee JLC, Leong LP, Lim SL. Nutrition intervention approaches to reduce malnutrition in oncology patients: a systematic review. Support Care Cancer. 2016;24(1):469–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26404858.

    Article  PubMed  Google Scholar 

  59. Ravasco P, Monteiro-Grillo I, Camilo M. Individualized nutrition intervention is of major benefit to colorectal cancer patients: long-term follow-up of a randomized controlled trial of nutritional therapy. Am J Clin Nutr. 2012;96(6):1346–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23134880.

    Article  CAS  PubMed  Google Scholar 

  60. Isenring E, Capra S, Bauer J, Davies PSW. The impact of nutrition support on body composition in cancer outpatients receiving radiotherapy. Acta Diabetol. 2003;40(Suppl 1):S162–4. Available from: http://link.springer.com/10.1007/s00592-003-0054-6.

    Article  PubMed  Google Scholar 

  61. Grande AJ, Silva V, Riera R, Medeiros A, Vitoriano SG, Peccin MS, et al. Exercise for cancer cachexia in adults. In: Grande AJ, editor. Cochrane database of systematic reviews. Chichester: Wiley; 2014. p. CD010804. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25424884.

    Google Scholar 

  62. Maddocks M, Jones LW, Wilcock A. Immunological and hormonal effects of exercise: implications for cancer cachexia. Curr Opin Support Palliat Care. 2013;7(4):376–82. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=01263393-201312000-00008.

    Article  PubMed  Google Scholar 

  63. Hwang C-L, Yu C-J, Shih J-Y, Yang P-C, Wu Y-T. Effects of exercise training on exercise capacity in patients with non-small cell lung cancer receiving targeted therapy. Support Care Cancer. 2012;20(12):3169–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22526147.

    Article  PubMed  Google Scholar 

  64. Oldervoll LM, Loge JH, Lydersen S, Paltiel H, Asp MB, Nygaard UV, et al. Physical exercise for cancer patients with advanced disease: a randomized controlled trial. Oncologist. 2011;16(11):1649–57. Available from: http://theoncologist.alphamedpress.org/cgi/doi/10.1634/theoncologist.2011-0133.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cheville AL, Kollasch J, Vandenberg J, Shen T, Grothey A, Gamble G, et al. A home-based exercise program to improve function, fatigue, and sleep quality in patients with stage IV lung and colorectal cancer: a randomized controlled trial. J Pain Symptom Manag. 2013;45(5):811–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23017624.

    Article  Google Scholar 

  66. Dev R, Del Fabbro E, Bruera E. Association between megestrol acetate treatment and symptomatic adrenal insufficiency with hypogonadism in male patients with cancer. Cancer. 2007;110(6):1173–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17647248.

    Article  CAS  PubMed  Google Scholar 

  67. Loprinzi CL, Michalak JC, Schaid DJ, Mailliard JA, Athmann LM, Goldberg RM, et al. Phase III evaluation of four doses of megestrol acetate as therapy for patients with cancer anorexia and/or cachexia. J Clin Oncol. 1993;11(4):762–7. Available from: http://ascopubs.org/doi/10.1200/JCO.1993.11.4.762.

    Article  CAS  PubMed  Google Scholar 

  68. Tassinari D, Fochessati F, Panzini I, Poggi B, Sartori S, Ravaioli A. Rapid progression of advanced “hormone-resistant” prostate cancer during palliative treatment with progestins for cancer cachexia. J Pain Symptom Manag. 2003;25(5):481–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12727047.

    Article  Google Scholar 

  69. Argilés JM, López-Soriano FJ, Stemmler B, Busquets S. Novel targeted therapies for cancer cachexia. Biochem J. 2017;474(16):2663–78. Available from: http://biochemj.org/lookup/doi/10.1042/BCJ20170032.

    Article  PubMed  Google Scholar 

  70. Pappalardo G, Almeida A, Ravasco P. Eicosapentaenoic acid in cancer improves body composition and modulates metabolism. Nutrition. 2015;31(4):549–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25770317.

    Article  CAS  PubMed  Google Scholar 

  71. Ries A, Trottenberg P, Elsner F, Stiel S, Haugen D, Kaasa S, et al. A systematic review on the role of fish oil for the treatment of cachexia in advanced cancer: an EPCRC cachexia guidelines project. Palliat Med. 2012;26(4):294–304. Available from: http://journals.sagepub.com/doi/10.1177/0269216311418709.

    Article  PubMed  Google Scholar 

  72. Fearon KCH, Von Meyenfeldt MF, Moses AGW, Van Geenen R, Roy A, Gouma DJ, et al. Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut. 2003;52(10):1479–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12970142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fearon KCH, Barber MD, Moses AG, Ahmedzai SH, Taylor GS, Tisdale MJ, et al. Double-blind, placebo-controlled, randomized study of eicosapentaenoic acid diester in patients with cancer cachexia. J Clin Oncol. 2006;24(21):3401–7. Available from: http://ascopubs.org/doi/10.1200/JCO.2005.04.5724.

    Article  CAS  PubMed  Google Scholar 

  74. van der Meij BS, Langius JAE, Spreeuwenberg MD, Slootmaker SM, Paul MA, Smit EF, et al. Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: an RCT. Eur J Clin Nutr. 2012;66(3):399–404. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22234041.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Murphy RA, Mourtzakis M, Chu QSC, Baracos VE, Reiman T, Mazurak VC. Nutritional intervention with fish oil provides a benefit over standard of care for weight and skeletal muscle mass in patients with nonsmall cell lung cancer receiving chemotherapy. Cancer. 2011;117(8):1775–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21360698.

    Article  CAS  PubMed  Google Scholar 

  76. Murphy RA, Mourtzakis M, Chu QSC, Baracos VE, Reiman T, Mazurak VC. Supplementation with fish oil increases first-line chemotherapy efficacy in patients with advanced nonsmall cell lung cancer. Cancer. 2011;117(16):3774–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21328326.

    Article  CAS  PubMed  Google Scholar 

  77. Jatoi A, Rowland K, Loprinzi CL, Sloan JA, Dakhil SR, MacDonald N, et al. An eicosapentaenoic acid supplement versus megestrol acetate versus both for patients with cancer-associated wasting: a North Central Cancer Treatment Group and National Cancer Institute of Canada collaborative effort. J Clin Oncol. 2004;22(12):2469–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15197210.

    Article  CAS  PubMed  Google Scholar 

  78. Jatoi A, Windschitl HE, Loprinzi CL, Sloan JA, Dakhil SR, Mailliard JA, et al. Dronabinol versus megestrol acetate versus combination therapy for cancer-associated anorexia: a North Central Cancer Treatment Group Study. J Clin Oncol. 2002;20(2):567–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11786587.

    Article  CAS  PubMed  Google Scholar 

  79. May PE, Barber A, D’Olimpio JT, Hourihane A, Abumrad NN. Reversal of cancer-related wasting using oral supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and glutamine. Am J Surg. 2002;183(4):471–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11975938.

    Article  CAS  PubMed  Google Scholar 

  80. Berk L, James J, Schwartz A, Hug E, Mahadevan A, Samuels M, et al. A randomized, double-blind, placebo-controlled trial of a β-hydroxyl β-methyl butyrate, glutamine, and arginine mixture for the treatment of cancer cachexia (RTOG 0122). Support Care Cancer. 2008;16(10):1179–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18293016.

    Article  PubMed  Google Scholar 

  81. Temel JS, Abernethy AP, Currow DC, Friend J, Duus EM, Yan Y, et al. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 2016;17(4):519–31. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1470204515005586.

    Article  CAS  PubMed  Google Scholar 

  82. Currow DC, Temel JS, Abernethy AP, Giorgino R, Friend J, Fearon K. Efficacy of anamorelin in cachectic patients with non-small cell lung cancer (NSCLC) and low BMI (>20 kg/m2): post-hoc analysis of two phase III studies. J Clin Oncol. 2016;34(26_suppl):203. Available from: http://ascopubs.org/doi/10.1200/jco.2016.34.26_suppl.203.

  83. Currow D, Temel JS, Abernethy A, Milanowski J, Friend J, Fearon KC. ROMANA 3: a phase 3 safety extension study of anamorelin in advanced non-small-cell lung cancer (NSCLC) patients with cachexia. Ann Oncol. 2017;28(8):1949–56. Available from: http://academic.oup.com/annonc/article/28/8/1949/3796493/ROMANA-3-a-phase-3-safety-extension-study-of.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mantovani G, Macciò A, Madeddu C, Serpe R, Antoni G, Massa E, et al. Phase II nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia. J Mol Med (Berl). 2010;88(1):85–92. Available from: http://link.springer.com/10.1007/s00109-009-0547-z.

    Article  CAS  PubMed  Google Scholar 

  85. Cerchietti LCA, Navigante AH, Castro MA. Effects of eicosapentaenoic and docosahexaenoic n-3 fatty acids from fish oil and preferential Cox-2 inhibition on systemic syndromes in patients with advanced lung cancer. Nutr Cancer. 2007;59(1):14–20. Available from: http://www.tandfonline.com/doi/abs/10.1080/01635580701365068.

    Article  CAS  PubMed  Google Scholar 

  86. Lundholm K, Gelin J, Hyltander A, Lönnroth C, Sandström R, Svaninger G, et al. Anti-inflammatory treatment may prolong survival in undernourished patients with metastatic solid tumors. Cancer Res. 1994;54(21):5602–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7923204.

    CAS  PubMed  Google Scholar 

  87. Reid J, Hughes C, Murray L, Parsons C, Cantwell M. Non-steroidal anti-inflammatory drugs for the treatment of cancer cachexia: a systematic review. Palliat Med. 2013;27(4):295–303. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22450159.

    Article  CAS  PubMed  Google Scholar 

  88. Gordon JN, Trebble TM, Ellis RD, Duncan HD, Johns T, Goggin PM. Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial. Gut. 2005;54(4):540–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15753541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wen H-S, Li X, Cao Y-Z, Zhang C-C, Yang F, Shi Y-M, et al. Clinical studies on the treatment of cancer cachexia with megestrol acetate plus thalidomide. Chemotherapy. 2012;58(6):461–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23406994.

    Article  CAS  PubMed  Google Scholar 

  90. Reid J, Mills M, Cantwell M, Cardwell CR, Murray LJ, Donnelly M. Thalidomide for managing cancer cachexia. In: Reid J, editor. Cochrane database Syst Rev, vol. 4. Chichester: Wiley; 2012. p. CD008664. Available from: http://doi.wiley.com/10.1002/14651858.CD008664.pub2.

    Google Scholar 

  91. Rigas JR, Schuster M, Orlov SV, Milovanovic B, Prabhash K, Smith JT, et al. Efect of ALD518, a humanized anti-IL-6 antibody, on lean body mass loss and symptoms in patients with advanced non-small cell lung cancer (NSCLC): results of a phase II randomized, double-blind safety and efficacy trial. J Clin Oncol. 2010;28(15_suppl):7622. Available from: http://ascopubs.org/doi/10.1200/jco.2010.28.15_suppl.7622.

    Article  Google Scholar 

  92. Mesa RA, Verstovsek S, Gupta V, Mascarenhas JO, Atallah E, Burn T, et al. Effects of ruxolitinib treatment on metabolic and nutritional parameters in patients with myelofibrosis from COMFORT-I. Clin Lymphoma Myeloma Leuk. 2015;15(4):214–221.e1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25682576.

    Article  PubMed  Google Scholar 

  93. Greig CA, Johns N, Gray C, MacDonald A, Stephens NA, Skipworth RJE, et al. Phase I/II trial of formoterol fumarate combined with megestrol acetate in cachectic patients with advanced malignancy. Support Care Cancer. 2014;22(5):1269–75. Available from: http://link.springer.com/10.1007/s00520-013-2081-3.

    Article  CAS  PubMed  Google Scholar 

  94. Stewart Coats AJ, Ho GF, Prabhash K, von Haehling S, Tilson J, Brown R, et al. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV non-small cell lung cancer or colorectal cancer: a randomized, double-blind, placebo-controlled, international multicentre phase II study (the ACT-ONE trial). J Cachexia Sarcopenia Muscle. 2016;7(3):355–65. Available from: http://doi.wiley.com/10.1002/jcsm.12126.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dalton JT, Taylor RP, Mohler ML, Steiner MS. Selective androgen receptor modulators for the prevention and treatment of muscle wasting associated with cancer. Curr Opin Support Palliat Care. 2013;7(4):345–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24189892.

    Article  PubMed  Google Scholar 

  96. Dobs AS, Boccia RV, Croot CC, Gabrail NY, Dalton JT, Hancock ML, et al. Effects of enobosarm on muscle wasting and physical function in patients with cancer: a double-blind, randomised controlled phase 2 trial. Lancet Oncol. 2013;14(4):335–45. Available from: http://linkinghub.elsevier.com/retrieve/pii/S147020451370055X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Crawford J, Prado CMM, Johnston MA, Gralla RJ, Taylor RP, Hancock ML, et al. Study design and rationale for the phase 3 clinical development program of enobosarm, a selective androgen receptor modulator, for the prevention and treatment of muscle wasting in cancer patients (POWER trials). Curr Oncol Rep. 2016;18(6):37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27138015.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 2010;142(4):531–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20723755.

    Article  CAS  PubMed  Google Scholar 

  99. Jameson GS, Von Hoff DD, Weiss GJ, Richards DA, Smith DA, Becerra C, Benson MC, Yuan Z, Robins DA, Turik M, Wagner M, Leijun Hu BKL. Safety of the antimyostatin monoclonal antibody LY2495655 in healthy subjects and patients with advanced cancer. J Clin Oncol. 2012;30:2516.

    Article  Google Scholar 

  100. Smith RC, Lin BK. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders. Curr Opin Support Palliat Care. 2013;7(4):352–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24157714.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mantovani G, Maccio A, Madeddu C, Serpe R, Massa E, Dessi M, et al. Randomized phase III clinical trial of five different arms of treatment in 332 patients with cancer cachexia. Oncologist. 2010;15(2):200–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20156909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Solheim TS, Laird BJA. Evidence base for multimodal therapy in cachexia. Curr Opin Support Palliat Care. 2012;6(4):424–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23111703.

    Article  PubMed  Google Scholar 

  103. Lundholm K, Daneryd P, Bosaeus I, Körner U, Lindholm E. Palliative nutritional intervention in addition to cyclooxygenase and erythropoietin treatment for patients with malignant disease: effects on survival, metabolism, and function. Cancer. 2004;100(9):1967–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15112279.

    Article  CAS  PubMed  Google Scholar 

  104. Cerchietti LCA, Navigante AH, Peluffo GD, Diament MJ, Stillitani I, Klein SA, et al. Effects of celecoxib, medroxyprogesterone, and dietary intervention on systemic syndromes in patients with advanced lung adenocarcinoma: a pilot study. J Pain Symptom Manag. 2004;27(1):85–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14711473.

    Article  CAS  Google Scholar 

  105. Porporato P. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis. 2016;5(2):e200. Available from: https://www.nature.com/articles/oncsis20163.pdf.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Gil-Bazo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eguren-Santamaría, I., Centeno, C., Gil-Bazo, I. (2021). Cancer Cachexia. In: Russo, A., Peeters, M., Incorvaia, L., Rolfo, C. (eds) Practical Medical Oncology Textbook. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-56051-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56051-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56050-8

  • Online ISBN: 978-3-030-56051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics