Skip to main content

Functional Anatomy of the Hamstrings

  • Chapter
  • First Online:
Proximal Hamstring Tears

Abstract

The hamstrings are found in the posterior region of the thigh and consist of the semimembranosus, semitendinosus, and biceps femoris muscles. These muscles are generally responsible for extension of the hip and flexion of the knee, although they also provide individual contributions to movement and stability of the lower limb. Injury to the hamstrings typically occurs during eccentric contraction, leading to tears in the musculotendinous junction or avulsions from the ischial tuberosity. These injuries cause significant morbidity and can be commonly seen in the context of sprinting and waterskiing, as well as accidental slips and falls. Proper treatment of conditions affecting the hamstrings requires a thorough understanding of the muscular anatomy as well as the local innervation patterns and adjacent skeletal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garrett WE Jr. Injuries to the muscle-tendon unit. Instr Course Lect. 1988;37:275–82.

    PubMed  Google Scholar 

  2. Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med. 2012;42(3):209–26.

    Article  PubMed  Google Scholar 

  3. Liu H, Garrett WE, Moorman CT, Yu B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: a review of the literature. J Sport Health Sci. 2012;1(2):92–101.

    Article  Google Scholar 

  4. Schache AG, Wrigley TV, Baker R, Pandy MG. Biomechanical response to hamstring muscle strain injury. Gait Posture. 2009;29(2):332–8.

    Article  PubMed  Google Scholar 

  5. Heiderscheit BC, Hoerth DM, Chumanov ES, Swanson SC, Thelen BJ, Thelen DG. Identifying the time of occurrence of a hamstring strain injury during treadmill running: a case study. Clin Biomech (Bristol, Avon). 2005;20(10):1072–8.

    Article  Google Scholar 

  6. Askling C, Saartok T, Thorstensson A. Type of acute hamstring strain affects flexibility, strength, and time to return to pre-injury level. Br J Sports Med. 2006;40(1):40–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during slow-speed stretching: clinical, magnetic resonance imaging, and recovery characteristics. Am J Sports Med. 2007;35(10):1716–24.

    Article  PubMed  Google Scholar 

  8. Ernlund L, Vieira LA. Hamstring injuries: update article. Rev Bras Ortop. 2017;52(4):373–82.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gidwani S, Bircher MD. Avulsion injuries of the hamstring origin – a series of 12 patients and management algorithm. Ann R Coll Surg Engl. 2007;89(4):394–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs. 2005;179(3):125–41.

    Article  PubMed  Google Scholar 

  11. Stępień K, Śmigielski R, Mouton C, Ciszek B, Engelhardt M, Seil R. Anatomy of proximal attachment, course, and innervation of hamstring muscles: a pictorial essay. Knee Surg Sports Traumatol Arthrosc. 2019;27(3):673–84.

    Article  PubMed  Google Scholar 

  12. Philippon MJ, Ferro FP, Campbell KJ, Michalski MP, Goldsmith MT, Devitt BM, et al. A qualitative and quantitative analysis of the attachment sites of the proximal hamstrings. Knee Surg Sports Traumatol Arthrosc. 2015;23(9):2554–61.

    Article  PubMed  Google Scholar 

  13. Sato K, Nimura A, Yamaguchi K, Akita K. Anatomical study of the proximal origin of hamstring muscles. J Orthop Sci. 2012;17(5):614–8.

    Article  PubMed  Google Scholar 

  14. van der Made AD, Wieldraaijer T, Kerkhoffs G, Kleipool R, Engebretsen L, Van Dijk C, et al. The hamstring muscle complex. Knee Surg Sports Traumatol Arthrosc. 2015;23(7):2115–22.

    Article  PubMed  Google Scholar 

  15. Battermann N, Appell H-J, Dargel J, Koebke J. An anatomical study of the proximal hamstring muscle complex to elucidate muscle strains in this region. Int J Sports Med. 2011;32(03):211–5.

    Article  CAS  PubMed  Google Scholar 

  16. Miller SL, Gill J, Webb GR. The proximal origin of the hamstrings and surrounding anatomy encountered during repair: a cadaveric study. JBJS. 2007;89(1):44–8.

    Article  Google Scholar 

  17. Feucht MJ, Plath JE, Seppel G, Hinterwimmer S, Imhoff AB, Brucker PU. Gross anatomical and dimensional characteristics of the proximal hamstring origin. Knee Surg Sports Traumatol Arthrosc. 2015;23(9):2576–82.

    Article  PubMed  Google Scholar 

  18. Neuschwander TB, Benke MT, Gerhardt MB. Anatomic description of the origin of the proximal hamstring. Arthroscopy. 2015;31(8):1518–21.

    Article  PubMed  Google Scholar 

  19. Cohen SB, Rangavajjula A, Vyas D, Bradley JP. Functional results and outcomes after repair of proximal hamstring avulsions. Am J Sports Med. 2012;40(9):2092–8.

    Article  PubMed  Google Scholar 

  20. Cross MJ, Vandersluis R, Wood D, Banff M. Surgical repair of chronic complete hamstring tendon rupture in the adult patient. Am J Sports Med. 1998;26(6):785–8.

    Article  CAS  PubMed  Google Scholar 

  21. Klingele KE, Sallay PI. Surgical repair of complete proximal hamstring tendon rupture. Am J Sports Med. 2002;30(5):742–7.

    Article  PubMed  Google Scholar 

  22. Bergman RA, Thompson SA, Afifi AK. Catalog of human variation. Baltimore: Urban & Schwarzenberg; 1984.

    Google Scholar 

  23. Patel S, Trehan RK, Railton GT. Successful ACL reconstruction with a variant of the pes anserinus. J Orthop Traumatol. 2009;10(4):203–5.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rizvi A, Iwanaga J, Oskouian RJ, Loukas M, Tubbs RS. Additional attachment of the semitendinosus and gracilis muscles to the crural fascia: a review and case illustration. Cureus. 2018;10(8):e3116.

    PubMed  PubMed Central  Google Scholar 

  25. Armfield DR, Kim DH, Towers JD, Bradley JP, Robertson DD. Sports-related muscle injury in the lower extremity. Clin Sports Med. 2006;25(4):803–42.

    Article  PubMed  Google Scholar 

  26. Koulouris G, Connell D. Hamstring muscle complex: an imaging review. Radiographics. 2005;25(3):571–86.

    Article  PubMed  Google Scholar 

  27. Chakravarthi K. Unusual unilateral multiple muscular variations of back of thigh. Ann Med Health Sci Res. 2013;3(Suppl 1):S1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marchand AJ, Proisy M, Ropars M, Cohen M, Duvauferrier R, Guillin R. Snapping knee: imaging findings with an emphasis on dynamic sonography. Am J Roentgenol. 2012;199(1):142–50.

    Article  Google Scholar 

  29. Markee JE, Logue JT Jr, Williams M, Stanton WB, Wrenn RN, Walker LB. Two-joint muscles of the thigh. J Bone Joint Surg Am. 1955;37-a(1):125–42.

    Article  CAS  PubMed  Google Scholar 

  30. Woods C, Hawkins RD, Maltby S, Hulse M, Thomas A, Hodson A. The Football Association Medical Research Programme: an audit of injuries in professional football—analysis of hamstring injuries. Br J Sports Med. 2004;38(1):36–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wangensteen A, Tol JL, Roemer FW, Bahr R, Dijkstra HP, Crema MD, et al. Intra-and interrater reliability of three different MRI grading and classification systems after acute hamstring injuries. Eur J Radiol. 2017;89:182–90.

    Article  PubMed  Google Scholar 

  32. De Maeseneer M, Shahabpour M, Lenchik L, Milants A, De Ridder F, De Mey J, et al. Distal insertions of the semimembranosus tendon: MR imaging with anatomic correlation. Skelet Radiol. 2014;43(6):781–91.

    Google Scholar 

  33. LaPrade RF, Morgan PM, Wentorf FA, Johansen S, Engebretsen L. The anatomy of the posterior aspect of the knee: an anatomic study. JBJS. 2007;89(4):758–64.

    Article  Google Scholar 

  34. Robinson J, Sanchez-Ballester J, Bull A, Thomas RW, Amis A. The posteromedial corner revisited: an anatomical description of the passive restraining structures of the medial aspect of the human knee. J Bone Joint Surg. 2004;86(5):674–81.

    Article  CAS  Google Scholar 

  35. Schache AG, Dorn TW, Blanch PD, Brown NA, Pandy MG. Mechanics of the human hamstring muscles during sprinting. Med Sci Sports Exerc. 2012;44(4):647–58.

    Article  PubMed  Google Scholar 

  36. Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech. 2007;40(16):3555–62.

    Article  PubMed  Google Scholar 

  37. De Smet AA, Best TM. MR imaging of the distribution and location of acute hamstring injuries in athletes. AJR Am J Roentgenol. 2000;174(2):393–9.

    Article  PubMed  Google Scholar 

  38. El-Khoury GY, Brandser EA, Kathol MH, Tearse DS, Callaghan JJ. Imaging of muscle injuries. Skelet Radiol. 1996;25(1):3–11.

    Article  CAS  Google Scholar 

  39. Garrett WE Jr. Muscle strain injuries: clinical and basic aspects. Med Sci Sports Exerc. 1990;22(4):436–43.

    Article  PubMed  Google Scholar 

  40. Wu R, Delahunt E, Ditroilo M, Lowery MM, De Vito G. Effect of knee joint angle and contraction intensity on hamstrings coactivation. Med Sci Sports Exerc. 2017;49(8):1668–76.

    Article  PubMed  Google Scholar 

  41. Biscarini A, Botti FM, Pettorossi VE. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study. Eur J Appl Physiol. 2013;113(9):2263–73.

    Article  PubMed  Google Scholar 

  42. van Wingerden JP, Vleeming A, Snijders CJ, Stoeckart R. A functional-anatomical approach to the spine-pelvis mechanism: interaction between the biceps femoris muscle and the sacrotuberous ligament. Eur Spine J. 1993;2(3):140–4.

    Article  PubMed  Google Scholar 

  43. Terry GC, LaPrade RF. The posterolateral aspect of the knee. Anatomy and surgical approach. Am J Sports Med. 1996;24(6):732–9.

    Article  CAS  PubMed  Google Scholar 

  44. Sutton G. Hamstrung by hamstring strains: a review of the literature*. J Orthop Sports Phys Ther. 1984;5(4):184–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Meislin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, L.J., Meislin, R.J. (2021). Functional Anatomy of the Hamstrings. In: Youm, T. (eds) Proximal Hamstring Tears. Springer, Cham. https://doi.org/10.1007/978-3-030-56025-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56025-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56024-9

  • Online ISBN: 978-3-030-56025-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics