Skip to main content

Exploring Koopman Operator Based Surrogate Models—Accelerating the Analysis of Critical Pedestrian Densities

  • Conference paper
  • First Online:
Traffic and Granular Flow 2019

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 252))

Abstract

We apply the Koopman operator framework to pedestrian dynamics. In an example scenario, we generate crowd density time series data with a microscopic pedestrian simulator. We then approximate the Koopman operator in matrix form through Extended Dynamic Mode Decomposition, using Geometric Harmonics on the data as a dictionary. The Koopman matrix is integrated into a surrogate model, which allows to approximate crowd density time series data to be generated, independently from the original microscopic simulator. The evaluation of the constructed surrogate model is orders of magnitude faster, and enables us to use methods that require many model evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Dietrich, G. Köster, H.J. Bungartz, SIAM J. Appl. Dyn. Syst. 15(4), 2078 (2016). https://doi.org/10.1137/15M1043613

  2. P. Liu, G. Samaey, C. William Gear, I.G. Kevrekidis, Appl. Numer. Math. 92, 54 (2015). https://doi.org/10.1016/j.apnum.2014.12.007

  3. N.W. Bode, M. Chraibi, S. Holl, Transp. Res. Part B: Methodol. 119, 197 (2019). https://doi.org/10.1016/j.trb.2018.12.002

    Article  Google Scholar 

  4. A. Portz, A. Seyfried, in Pedestrian and Evacuation Dynamics, vol. 1 (Springer, 2011), pp. 577–586. https://doi.org/10.1007/978-1-4419-9725-8_52

  5. I.G. Kevrekidis, G. Samaey, Ann. Rev. Phys. Chem. 60(1), 321 (2009). https://doi.org/10.1146/annurev.physchem.59.032607.093610

    Article  ADS  Google Scholar 

  6. F. Dietrich, F. Künzner, T. Neckel, G. Köster, H.J. Bungartz, Int. J. Uncert. Quant. 8, 175 (2018). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018021975

    Article  Google Scholar 

  7. B. Kleinmeier, B. Zönnchen, M. Gödel, G. Köster, Collective dynamics 4 (2019). https://doi.org/10.17815/CD.2019.21

  8. M.J. Seitz, G. Köster, Phys. Rev. E 86(4), 046108 (2012). https://doi.org/10.1103/PhysRevE.86.046108

    Article  ADS  Google Scholar 

  9. I. von Sivers, G. Köster, Transp. Res. Part B: Methodol. 74, 104 (2015). https://doi.org/10.1016/j.trb.2015.01.009

    Article  Google Scholar 

  10. P.J. Schmid, J. Fluid Mech. 656, 5 (2010). https://doi.org/10.1017/s0022112010001217

    Article  ADS  MathSciNet  Google Scholar 

  11. M.O. Williams, I.G. Kevrekidis, C.W. Rowley, J. Nonlinear Sci. 25(6), 1307 (2015). https://doi.org/10.1007/s00332-015-9258-5

    Article  ADS  MathSciNet  Google Scholar 

  12. J.N. Kutz, Brunton, S.L. Brunton, B.W. Brunton, J.L. Proctor, Dynamic Mode Decomposition: Data-driven Modeling of Complex Systems (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2016). https://doi.org/10.1137/1.9781611974508

  13. H. Mansour, M. Benosman, V. Huroyan, International Conference on Sampling Theory and Applications (SampTA) (2017), pp. 451–455. https://doi.org/10.1109/SAMPTA.2017.8024350

  14. R.R. Coifman, S. Lafon, App. Comput. Harmonic Anal. 21(1), 31 (2006). https://doi.org/10.1016/j.acha.2005.07.005

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the German Research Foundation (DFG) grant no. KO 5257/3-1. The work of I.G.K. was partially supported by the DARPA PAI program. D.L. thanks the research office (FORWIN) of Munich University of Applied Sciences and the Faculty Graduate Center CeDoSIA of TUM Graduate School at Technical University of Munich for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lehmberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lehmberg, D., Dietrich, F., Kevrekidis, I.G., Bungartz, HJ., Köster, G. (2020). Exploring Koopman Operator Based Surrogate Models—Accelerating the Analysis of Critical Pedestrian Densities. In: Zuriguel, I., Garcimartin, A., Cruz, R. (eds) Traffic and Granular Flow 2019. Springer Proceedings in Physics, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-030-55973-1_19

Download citation

Publish with us

Policies and ethics